Publications by authors named "Helena Garcia-Castro"

Spiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate.

View Article and Find Full Text PDF

Many annelids can regenerate missing body parts or reproduce asexually, generating all cell types in adult stages. However, the putative adult stem cell populations involved in these processes, and the diversity of cell types generated by them, are still unknown. To address this, we recover 75,218 single cell transcriptomes of the highly regenerative and asexually-reproducing annelid Pristina leidyi.

View Article and Find Full Text PDF

Planarian cell dissociation methods using enzymatic approaches are well established and have been widely used in the field. However, their use in transcriptomics and especially single-cell transcriptomics raises concerns as cells are dissociated alive, and this induces cellular stress responses. Here we describe a protocol for planarian cell dissociation using ACME, a dissociation-fixation approach based on acetic acid and methanol.

View Article and Find Full Text PDF

Annelids are a broadly distributed, highly diverse, economically and environmentally important group of animals. Most species can regenerate missing body parts, and many are able to reproduce asexually. Therefore, many annelids can generate all adult cell types in adult stages.

View Article and Find Full Text PDF

Single-cell transcriptomics has revolutionised biology allowing the quantification of gene expression in individual cells. Since each single cell contains cell type specific mRNAs, these techniques enable the classification of cell identities. Therefore, single cell methods have been used to explore the repertoire of cell types (the single cell atlas) of different organisms, including freshwater planarians.

View Article and Find Full Text PDF

Single-cell sequencing technologies are revolutionizing biology, but they are limited by the need to dissociate live samples. Here, we present ACME (ACetic-MEthanol), a dissociation approach for single-cell transcriptomics that simultaneously fixes cells. ACME-dissociated cells have high RNA integrity, can be cryopreserved multiple times, and are sortable and permeable.

View Article and Find Full Text PDF