Manganese (Mn) is an essential trace element required for a range of physiological processes, but Mn can also be neurotoxic especially during development. Excess levels of Mn accumulate preferentially in the striatum and can induce a syndrome called manganism, characterized by an initial stage of psychiatric disorder followed by motor impairment. In the present study, we investigated the effects of Mn exposure on the developing dopaminergic system, specifically tyrosine hydroxylase (TH) protein and phosphorylation levels in the striatum of rats.
View Article and Find Full Text PDFExposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms.
View Article and Find Full Text PDFDisturbances in glutamatergic transmission and signaling pathways have been associated with temporal lobe epilepsy (TLE) in humans. However, the profile of these alterations within specific regions of the hippocampus and cerebral cortex has not yet been examined. The pilocarpine model in rodents reproduces the main features of TLE in humans.
View Article and Find Full Text PDF