Publications by authors named "Helena Coelho"

Introduction: The presence of multiple chronic conditions, also referred to as multimorbidity, is a common finding in adults. Epidemiologic research can help identify groups of individuals with similar clinical profiles who could benefit from similar interventions. Many cross-sectional studies have revealed the existence of different multimorbidity patterns.

View Article and Find Full Text PDF

Glycosylation is a critical post-translational modification that plays a pivotal role in several biological processes, such as the immune response. Alterations in glycosylation can modulate the course of various pathologies, such as the case of congenital disorders of glycosylation (CDG), a group of more than 160 rare and complex genetic diseases. Although the link between glycosylation and immune dysfunction has already been recognized, the immune involvement in most CDG remains largely unexplored and poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • - Human Siglec-9 is a glycoimmune checkpoint receptor on immune cells that interacts with sialic acid-containing glycans, influencing its inhibitory functions.
  • - The study utilized advanced NMR techniques to analyze the structure of Siglec-9 and its binding interactions with various natural and synthetically modified sialoglycans.
  • - Findings revealed how structural modifications on sialic acids enhance binding affinity to Siglec-9, providing insights for designing new therapies targeting this receptor.
View Article and Find Full Text PDF

SARS-CoV-2 diagnostic tests have become an important tool for pandemic control. Among the alternatives for COVID-19 diagnosis, antigen rapid diagnostic tests (Ag-RDT) are very convenient and widely used. However, as SARS-CoV-2 variants may continuously emerge, the replacement of tests and reagents may be required to maintain the sensitivity of Ag-RDTs.

View Article and Find Full Text PDF
Article Synopsis
  • Siglec-15 is a protein that helps regulate the immune system and is a potential target for cancer therapies, but its exact structure and function are not well understood.
  • This study successfully determined the crystal structure of Siglec-15 and its interaction with specific sugars (sialic acids) using advanced techniques like co-crystallization and NMR spectroscopy.
  • The researchers found that Siglec-15 binds to T cells through different sugar linkages and identified CD11b, a leukocyte integrin, as a partner in this binding, highlighting the importance of glycosylation in T cell immunity.
View Article and Find Full Text PDF

The trematode parasite Schistosoma mansoni causes schistosomiasis, which affects over 200 million people worldwide. Schistosomes are dioecious, with egg laying depending on the females' obligatory pairing with males. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that have been involved in other species with reproduction, stem cell maintenance, and drug resistance.

View Article and Find Full Text PDF

Human sialic acid binding immunoglobulin-like lectin-8 (Siglec-8) is an inhibitory receptor that triggers eosinophil apoptosis and can inhibit mast cell degranulation when engaged by specific monoclonal antibodies (mAbs) or sialylated ligands. Thus, Siglec-8 has emerged as a critical negative regulator of inflammatory responses in diverse diseases, such as allergic airway inflammation. Herein, we have deciphered the molecular recognition features of the interaction of Siglec-8 with the mAb lirentelimab (2C4, under clinical development) and with a sialoside mimetic with the potential to suppress mast cell degranulation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the spread of the Delta variant of SARS-CoV-2 in Minas Gerais, Brazil, highlighting its introduction and dominance, which reached 70% of cases within 8 weeks during mid 2021.
  • Using PCR genotyping and genome sequencing, it is shown that Delta is more transmissible than the earlier Gamma variant, but this increase in transmissibility did not lead to a rise in cases or deaths, likely due to vaccination efforts.
  • The research also identifies Rio de Janeiro as the primary source for the Delta variant's spread in Minas Gerais, suggesting effective control measures despite the heightened transmissibility of the variant.
View Article and Find Full Text PDF

C1GalT1 is an essential inverting glycosyltransferase responsible for synthesizing the core 1 structure, a common precursor for mucin-type O-glycans found in many glycoproteins. To date, the structure of C1GalT1 and the details of substrate recognition and catalysis remain unknown. Through biophysical and cellular studies, including X-ray crystallography of C1GalT1 complexed to a glycopeptide, we report that C1GalT1 is an obligate GT-A fold dimer that follows a S2 mechanism.

View Article and Find Full Text PDF

The large family of polypeptide GalNAc-transferases (GalNAc-Ts) controls with precision how GalNAc -glycans are added in the tandem repeat regions of mucins (, MUC1). However, the structural features behind the creation of well-defined and clustered patterns of -glycans in mucins are poorly understood. In this context, herein, we disclose the full process of MUC1 -glycosylation by GalNAc-T2/T3/T4 isoforms by NMR spectroscopy assisted by molecular modeling protocols.

View Article and Find Full Text PDF

All cells are decorated with a highly dense and complex structure of glycan chains, which are mostly attached to proteins and lipids. In this context, sialic acids are a family of nine-carbon acidic monosaccharides typically found at the terminal position of glycan chains, modulating several physiological and pathological processes. Sialic acids have many structural and modulatory roles due to their negative charge and hydrophilicity.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) emerged in the past 20 years due to massive amounts of scientific data regarding transcriptomic analyses. They have been implicated in a plethora of cellular processes in higher eukaryotes. However, little is known about lncRNA possible involvement in parasitic diseases, with most studies only detecting their presence in parasites of human medical importance.

View Article and Find Full Text PDF

Genetic variants of SARS-CoV-2 have been emerging and circulating in many places across the world. Rapid detection of these variants is essential since their dissemination can impact transmission rates, diagnostic procedures, disease severity, response to vaccines or patient management. Sanger sequencing has been used as the preferred approach for variant detection among circulating human immunodeficiency and measles virus genotypes.

View Article and Find Full Text PDF

Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is the most used, fast, and reproducible method to confirm large-scale gene expression data. The use of stable reference genes for the normalization of RT-qPCR assays is recognized worldwide. No systematic study for selecting appropriate reference genes for usage in RT-qPCR experiments comparing gene expression levels at different Schistosoma mansoni life-cycle stages has been performed.

View Article and Find Full Text PDF

Interactions of glycan-specific epitopes to human lectin receptors represent novel immune checkpoints for investigating cancer and infection diseases. By employing a multidisciplinary approach that combines isothermal titration calorimetry, NMR spectroscopy, molecular dynamics simulations, and X-ray crystallography, we investigated the molecular determinants that govern the recognition of the tumour and pathogenic glycobiomarker LacdiNAc (GalNAcβ1-4GlcNAc, LDN), including their comparison with the ubiquitous LacNAc epitope (Galβ1-4GlcNAc, LN), by two human immune-related lectins, galectin-3 (hGal-3) and the macrophage galactose C-type lectin (hMGL). A different mechanism of binding and interactions was observed for the hGal-3/LDN and hMGL/LDN complexes, which explains the remarkable difference in the binding specificity of LDN and LN by these two lectins.

View Article and Find Full Text PDF

The human macrophage galactose lectin (MGL) is an endocytic type II transmembrane receptor expressed on immature monocyte-derived dendritic cells and activated macrophages and plays a role in modulating the immune system in response to infections and cancer. MGL contains an extracellular calcium-dependent (C-type) carbohydrate recognition domain (CRD) that specifically binds terminal acetylgalactosamine glycan residues such as the Tn and sialyl-Tn antigens found on tumor cells, as well as other and glycans displayed on certain viruses and parasites. Even though the glycan specificity of MGL is known and several binding glycoproteins have been identified, the molecular basis for substrate recognition has remained elusive due to the lack of high-resolution structures.

View Article and Find Full Text PDF

The molecular basis of antibody 5E5, which recognizes the entire GalNAc unit as a primary epitope is disclosed. The antibody's contacts with the peptide are mostly limited to two residues, allowing it to show some degree of promiscuity. These findings open the door to the chemical design of peptide-mimetics for developing efficient anti-cancer vaccines and diagnostic tools.

View Article and Find Full Text PDF

The synthesis, antimicrobial activity evaluations, biomolecule-binding properties (DNA), and absorption and emission properties of a new series of ()-1,1,1-trichloro-4-alkyl(aryl)amino-4-arylbut-3-en-2-ones and 2,2-difluoro-3-alkyl(aryl)amino-4-aryl-6-(trichloromethyl)-2-1,3,2-oxazaborinin-3-ium-2-uides in which 3(4)-alkyl(aryl) = H, Me, -propyl, -butyl, CH, 4-CHCH, 4-CHOCH, 4-NOCH, 4-FCH, 4-BrCH, 2-naphthyl, is reported. A series of β-enaminoketones is synthesized from the O,N-exchange reaction of some amines with ()-1,1,1-trichloro-4-methoxy-4-aryl-but-3-en-2-ones at 61-90% yields. Subsequently, reactions of the resulting β-enaminoketones with an appropriate source of boron (BF.

View Article and Find Full Text PDF
Article Synopsis
  • * Different human lectins that interact with C-labelled glycans on the RBD have been analyzed, focusing on those expressed in various organs affected during infection, including galectins, Siglecs, and C-type lectins.
  • * The research combines insights from both glycoproteins and lectins to understand their interactions better, leading to the proposal of 3D models for the complexes formed during these interactions.*
View Article and Find Full Text PDF

Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by O-glycosylating Thr178 in a furin proprotein processing motif RHTR↓S. FGF23 regulates phosphate homeostasis and deficiency in GALNT3 or FGF23 results in hyperphosphatemia and familial tumoral calcinosis. We explored the molecular mechanism for GalNAc-T3 glycosylation of FGF23 using engineered cell models and biophysical studies including kinetics, molecular dynamics and X-ray crystallography of GalNAc-T3 complexed to glycopeptide substrates.

View Article and Find Full Text PDF

The human macrophage galactose-type lectin (MGL), expressed on macrophages and dendritic cells (DCs), modulates distinct immune cell responses by recognizing N-acetylgalactosamine (GalNAc) containing structures present on pathogens, self-glycoproteins, and tumor cells. Herein, NMR spectroscopy and molecular dynamics (MD) simulations were used to investigate the structural preferences of MGL against different GalNAc-containing structures derived from the blood group A antigen, the Forssman antigen, and the GM2 glycolipid. NMR spectroscopic analysis of the MGL carbohydrate recognition domain (MGL-CRD, C181-H316) in the absence and presence of methyl α-GalNAc (α-MeGalNAc), a simple monosaccharide, shows that the MGL-CRD is highly dynamic and its structure is strongly altered upon ligand binding.

View Article and Find Full Text PDF

New monosaccharide-based lipid A analogues were rationally designed through MD-2 docking studies. A panel of compounds with two carboxylate groups as phosphates bioisosteres, was synthesized with the same glucosamine-bis-succinyl core linked to different unsaturated and saturated fatty acid chains. The binding of the synthetic compounds to purified, functional recombinant human MD-2 was studied by four independent methods.

View Article and Find Full Text PDF

Mucin-type -glycosylation is initiated by a family of polypeptide GalNAc-transferases (GalNAc-Ts) which are type-II transmembrane proteins that contain Golgi luminal catalytic and lectin domains that are connected by a flexible linker. Several GalNAc-Ts, including GalNAc-T4, show both long-range and short-range prior glycosylation specificity, governed by their lectin and catalytic domains, respectively. While the mechanism of the lectin-domain-dependent glycosylation is well-known, the molecular basis for the catalytic-domain-dependent glycosylation of glycopeptides is unclear.

View Article and Find Full Text PDF

This study investigated the antioxidant activity of (CG) and its effect on Na, K-ATPase from cardiac muscle The ethanolic extract showed higher antioxidant capacity compared to aqueous and ethyl acetate fraction. Ethyl acetate fraction showed β-sitosterol-3-O-β-glucoside, kaempferol, quercetin, isoquercetin, gallic acid methyl ester, and gallic acid. The ethanolic extract also reduced the Na,K-ATPase activity.

View Article and Find Full Text PDF

The family of polypeptide N-acetylgalactosamine (GalNAc) transferases (GalNAc-Ts) orchestrates the initiating step of mucin-type protein O-glycosylation by transfer of GalNAc moieties to serine and threonine residues in proteins. Deficiencies and dysregulation of GalNAc-T isoenzymes are related to different diseases. Recently, it has been demonstrated that an inactive GalNAc-T2 mutant (F104S), which is not located at the active site, induces low levels of high-density lipoprotein cholesterol (HDL-C) in humans.

View Article and Find Full Text PDF