Plant Environ Interact
August 2022
The effects of metals on plants and herbivores, as well as the interaction among the latter, are well documented. However, the effects of simultaneous herbivory and metal accumulation remain poorly studied. Here, we shed light on this topic by infesting cadmium-accumulating tomato plants (), either exposed to cadmium or not, with herbivorous spider mites, or during 14 days.
View Article and Find Full Text PDFAdaptive radiation is a significant driver of biodiversity. Primarily studied in animal systems, mechanisms that trigger adaptive radiations remain poorly understood in plants. A frequently claimed indicator of adaptive radiation in plants is growth form diversity when tied to the occupation of different habitats.
View Article and Find Full Text PDFSome plants are able to accumulate in their shoots metals at levels that are toxic to most other organisms. This ability may serve as a defence against herbivores. Therefore, both metal-based and organic defences may affect herbivores.
View Article and Find Full Text PDFTo protect human health and the environment (namely ecosystems), international air quality protocols and guidelines, like the Gothenburg protocol (1999) and the 2001 EU Air Quality Directive (NECD), conveyed national emission ceilings for atmospheric pollutants (Directive 2001/81/EC), including the reduction of sulfur (S) and nitrogen (N) emissions by 2010. However, to what degree this expected reduction in emissions had reflections at the ecosystem level (i.e.
View Article and Find Full Text PDFJ Toxicol Environ Health A
October 2017
Atmosphere is a major pathway for transport and deposition of pollutants in the environment. In industrial areas, organic compounds are released or formed as by-products, such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F's). Inorganic chemical elements, including lead and arsenic, are also part of the pollutants mixture, and even in low concentrations may potentially be toxic and carcinogenic.
View Article and Find Full Text PDFHigh nickel (Ni) levels exert toxic effects on plant growth and plant water content, thus affecting photosynthesis. In a pot experiment, we investigated the effect of the Ni concentration on the physiological characteristics of the Ni hyperaccumulator Alyssoides utriculata when grown on a vermiculite substrate in the presence of different external Ni concentrations (0-500 mg Ni L(-1)). The results showed that the Ni concentration was higher in leaves than in roots, as evidenced by a translocation factor = 3 and a bioconcentration factor = 10.
View Article and Find Full Text PDFThis study investigated the accumulation and distribution of nickel in the leaves and roots of the Mediterranean shrub Alyssoides utriculata to assess its potential use in phytoremediation of Ni contaminated soils. Total (AAS and ICP-MS) Ni, Ca and Mg contents were analyzed in the plants and related to their bioavailability (in EDTA) in serpentine and non-serpentine soils. To find the relationships between the soil available Ni and the Ni content of this species, we also evaluated possible interactions with Ca and Mg.
View Article and Find Full Text PDFThe several established criteria to define a hyperaccumulator plant were applied to a rare and endangered species, Plantago almogravensis, and to the 3rd most abundant element in the earth crust, Al. Using the most common criteria, P. almogravensis undoubtedly is an Al hyperaccumulator plant.
View Article and Find Full Text PDF