Publications by authors named "Helena C Reinardy"

Article Synopsis
  • Reduced seawater salinity significantly affects the physiology of the European sea urchin, Echinus esculentus, with short-term exposure showing a direct correlation between lower salinity, oxygen consumption, and survival rates.
  • Long-term exposure at 21‰ over 25 days led to increased oxygen consumption but decreased feeding and activity levels compared to normal salinity, while 26‰ showed acclimation with similar metrics to control values.
  • The study highlights the sea urchin's phenotypic plasticity at around 26‰ salinity for acclimation, but notes that lower levels like 21‰ could restrict its habitat in areas with high freshwater influx.
View Article and Find Full Text PDF

This investigation deals with how temperature influences oil toxicity, alone or combined with dispersant (D). Larval lengthening, abnormalities, developmental disruption, and genotoxicity were determined in sea urchin embryos for assessing toxicity of low-energy water accommodated fractions (LEWAF) of three oils (NNA crude oil, marine gas oil -MGO-, and IFO 180 fuel oil) produced at 5-25 °C. PAH levels were similar amongst LEWAFs but PAH profiles varied with oil and production temperature.

View Article and Find Full Text PDF

Interspecific comparison of DNA damage can provide information on the relative vulnerability of marine organisms to toxicants that induce oxidative genotoxicity. Hydrogen peroxide (H2O2) is an oxidative toxicant that causes DNA strand breaks and nucleotide oxidation and is used in multiple industries including Atlantic salmon aquaculture to treat infestations of ectoparasitic sea lice. H2O2 (up to 100 mM) can be released into the water after sea lice treatment, with potential consequences of exposure in nontarget marine organisms.

View Article and Find Full Text PDF

A multi-index approach (larval lenghthening and malformations, developmental disruption, and genotoxicity) was applied using sea-urchin embryos as test-organisms. PAH levels measured in the under-ice weathered aqueous fraction (UIWAF) were lower than in the low-energy water accommodated fraction (LEWAF) and similar amongst UIWAFs of different oils. UIWAFs and LEWAFs caused toxic effects, more markedly in UIWAFs, that could not be attributed to measured individual PAHs or to their mixture.

View Article and Find Full Text PDF

This study investigates DNA damage and mortality in an Arctic marine copepod after long-term exposure to lowered pH. Acartia longiremis were collected from northern Norway and incubated in ambient pH 8.1, and reduced pH 7.

View Article and Find Full Text PDF

Climate change, along with environmental pollution, can act synergistically on an organism to amplify adverse effects of exposure. The Arctic is undergoing profound climatic change and an increase in human activity, resulting in a heightened risk of accidental oil spills. Embryos and larvae of polar cod (Boreogadus saida), a key Arctic forage fish species, were exposed to low levels of crude oil concurrently with a 2.

View Article and Find Full Text PDF

This study investigated effects of sea lice pharmaceuticals on egg-bearing deep-water shrimp (Pandalus borealis). Both mortality and sub-lethal effects (behavior, embryo development, and reproductive output) were studied for each of three pharmaceuticals alone and in different sequential combinations. The most severe effect was observed for deltamethrin where 2 h exposure to 330 times diluted treatment dose (alone and in sequential application with hydrogen peroxide and azamethiphos) induced almost 100% mortality within a few days after exposure.

View Article and Find Full Text PDF

In Norway, mine tailings waste can be deposited by coastal submarine dispersal. Mine tailings slurry includes fine particles <10 µm with elevated levels of metals (e.g.

View Article and Find Full Text PDF

Repparfjorden in northern Norway has been partly designated for submarine mine tailings disposal when the adjacent Cu mine re-opens in 2019. In order to increase sedimentation, the flocculant, Magnafloc10 is planned to be added to the mine tailings prior to discharge into the fjord. This study investigated the feasibility of reducing the Cu concentrations (375 mg/kg) in the mine tailings by applying electrodialytic extraction, including potential optimisation by adding Magnafloc10.

View Article and Find Full Text PDF

Increasing atmospheric carbon dioxide (CO) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization in marine calcifiers such as sea urchins are predicted to be especially vulnerable.

View Article and Find Full Text PDF

Complex mixtures of pharmaceutical chemicals in surface waters indicate potential for mixture effects in aquatic organisms. The objective of the present study was to evaluate whether effects on target gene expression and enzymatic activity of individual substances at environmentally relevant concentrations were additive when mixed. Expression of zebrafish cytochrome P4501A (cyp1a) and vitellogenin (vtg) genes as well as activity of ethoxyresorufin-O-deethylase (EROD) were analyzed after exposure (96h) to caffeine-Caf, ibuprofen-Ibu, and carbamazepine-Cbz (0.

View Article and Find Full Text PDF

Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus.

View Article and Find Full Text PDF

The ability to protect the genome from harmful DNA damage is critical for maintaining genome stability and protecting against disease, including cancer. Many echinoderms, including sea urchins, are noted for the lack of neoplastic disease, but there are few studies investigating susceptibility to DNA damage and capacity for DNA repair in these animals. In this study, DNA damage was induced in adult sea urchin coelomocytes and larvae by exposure to a variety of genotoxicants [UV-C (0-3000 J/m(2)), hydrogen peroxide (0-10mM), bleomycin (0-300 µM) and methylmethanesulfonate (MMS, 0-30 mM)] and the capacity for repair was measured over a 24-h period of recovery.

View Article and Find Full Text PDF

The capacity to withstand and repair DNA damage differs among species and plays a role in determining an organism's resistance to genotoxicity, life history, and susceptibility to disease. Environmental stressors that affect organisms at the genetic level are of particular concern in ecotoxicology due to the potential for chronic effects and trans-generational impacts on populations. Echinoderms are valuable organisms to study the relationship between DNA repair and resistance to genotoxic stress due to their history and use as ecotoxicological models, little evidence of senescence, and few reported cases of neoplasia.

View Article and Find Full Text PDF

DNA repair is initiated by transcription of genes in response to specific types of damage. Breaks in DNA strands (single and double) are repaired predominantly through non-homologous end-joining (NHEJ) or homologous recombination (HR), but progression of repair and changes in expression profiles of genes involved are unknown. DNA damage was induced in zebrafish larvae by brief exposure (10min) to hydrogen peroxide (H2O2; 100mM), and induction of DNA strand breaks was assessed by single-cell gel electrophoresis (comet) assay over 24h.

View Article and Find Full Text PDF

Process waters from oil sands industries (OSPW) have been reported to exhibit estrogenic effects. Although the compounds responsible are unknown, some aromatic naphthenic acids (NA) have been implicated. The present study was designed to investigate whether aromatic NA might cause such effects.

View Article and Find Full Text PDF

Although cobalt (Co) is an environmental contaminant of surface waters in both radioactive (e.g. (60)Co) and non-radioactive forms, there is relatively little information about Co toxicity in fishes.

View Article and Find Full Text PDF

Understanding uptake and depuration of radionuclides in organisms is necessary to relate exposure to radiation dose and ultimately to biological effects. We investigated uptake and depuration of a mixture of radionuclides to link bioaccumulation with radiation dose in zebrafish, Danio rerio. Adult zebrafish were exposed to radionuclides ((54)Mn, (60)Co, (65)Zn, (75)Se, (109)Cd, (110m)Ag, (134)Cs and (241)Am) at tracer levels (<200 Bq g(-1)) for 14 d, either via water or diet.

View Article and Find Full Text PDF

The objective of this investigation was to compare the toxicity of two manufactured carbon nanomaterials (CNs) to determine if shape influenced toxicity. Juvenile rainbow trout Oncorhynchus mykiss were fed a control diet (no CN addition), or a diet supplemented with 500 mg single-walled carbon nanotubes (SWCNT) kg(-1) or 500 mg C(60) kg(-1) for six weeks. Fish growth, haematology, tissue ion concentrations, histopathology, osmoregulation, and biochemistry were evaluated.

View Article and Find Full Text PDF