Publications by authors named "Helena Backlund Wasling"

Slowly-adapting type II (SA-II, Ruffini) mechanoreceptive afferents respond well to pressure and stretch, and are regularly encountered in human microneurography studies. Despite an understanding of SA-II response properties, their role in touch perception remains unclear. Specific roles of different myelinated Aβ mechanoreceptive afferents in tactile perception have been revealed using single unit intraneural microstimulation (INMS), via microneurography, recording from and then electrically stimulating individual afferents.

View Article and Find Full Text PDF

Unmyelinated tactile (C-tactile or CT) afferents are abundant in arm hairy skin and have been suggested to signal features of social affective touch. Here, we recorded from unmyelinated low-threshold mechanosensitive afferents in the peroneal and radial nerves. The most distal receptive fields were located on the proximal phalanx of the third finger for the superficial branch of the radial nerve and near the lateral malleolus for the peroneal nerve.

View Article and Find Full Text PDF

C-tactile (CT) afferents were long-believed to be lacking in humans, but these were subsequently shown to densely innervate the face and arm skin, and to a lesser extent the leg. Their firing frequency to stroking touch at different velocities has been correlated with ratings of tactile pleasantness. CT afferents were thought to be absent in human glabrous skin; however, tactile pleasantness can be perceived across the whole body, including glabrous hand skin.

View Article and Find Full Text PDF

Objective/background: A cross-sectional study of health-related quality of life (HRQoL), procrastination and the relation to sleepiness, depression and fatigue in post-H1N1 narcolepsy type 1 (NT1), sporadic NT1 and idiopathic hypersomnia (IH).

Patients/methods: Participants with NT1 and IH were enrolled from the Department of Neurology, Sahlgrenska University Hospital in Gothenburg (Sweden). All participants completed questionnaires about medication, employment, studies, transfer income, sleepiness, HRQoL, depression, fatigue and three questionnaires for procrastination.

View Article and Find Full Text PDF

Sensing movements across the skin surface is a complex task for the tactile sensory system, relying on sophisticated cortical processing. Functional MRI has shown that judgements of the direction of tactile stimuli moving across the skin are processed in distributed cortical areas in healthy humans. To further study which brain areas are important for tactile direction discrimination, we performed a lesion study, examining a group of patients with first-time stroke.

View Article and Find Full Text PDF

C-tactile (CT) afferents respond to gentle tactile stimulation, but only a handful of studies in humans and animals have investigated whether their firing is modified by temperature. We describe the effects of radiant thermal stimuli, and of stationary and very slowly moving mechanothermal stimuli, on CT afferent responses. We find that CT afferents are primarily mechanoreceptors, as they fired little during radiant thermal stimuli, but they exhibited different patterns of firing during combined mechano-cool stimulation compared with warming.

View Article and Find Full Text PDF

The present case study details sensations elicited by electrical stimulation of peripheral nerve axons using an implanted nerve cuff electrode, in a participant with a transhumeral amputation. The participant uses an osseointegrated electromechanical interface, which enables skeletal attachment of the prosthesis and long-term, stable, bidirectional communication between the implanted electrodes and prosthetic arm. We focused on evoking somatosensory percepts, where we tracked and quantified the evolution of perceived sensations in the missing hand, which were evoked from electrical stimulation of the nerve, for over 2 yr.

View Article and Find Full Text PDF

Caressing touch is an effective way to communicate emotions and to create social bonds. It is also one of the key mediators of early parental bonding. The caresses are generally thought to represent a social form of touching and indeed, slow, gentle brushing is encoded in specialized peripheral nerve fibers, the C-tactile (CT) afferents.

View Article and Find Full Text PDF

Affective touch plays an important role in children's social interaction and is involved in shaping the development of the social brain. The positive affective component of touch is thought to be conveyed via a group of unmyelinated, low-threshold mechanoreceptive afferents, known as C-tactile fibers that are optimally activated by gentle, slow, stroking touch. Touch targeting these C-tactile fibers has been shown to decrease the heart rate in infants.

View Article and Find Full Text PDF

Unmyelinated low threshold C-tactile fibers moderate pleasant aspects of touch. These fibers respond optimally to stroking stimulation of the skin with slow velocities (1-10 cm/s). Low threshold mechanoreceptors are arranged around hair follicles in rodent skin.

View Article and Find Full Text PDF

C-mechanoreceptors in humans comprise a population of unmyelinated afferents exhibiting a wide range of mechanical sensitivities. C-mechanoreceptors are putatively divided into those signaling gentle touch (C-tactile afferents, CTs) and nociception (C-mechanosensitive nociceptors, CMs), giving rise to positive and negative affect, respectively. We sought to distinguish, compare, and contrast the properties of a population of human C-mechanoreceptors to see how fundamental the divisions between these putative subpopulations are.

View Article and Find Full Text PDF

Pleasant, affective touch provides various health benefits, including stress and depression relief. There is a dichotomy between mechanoreceptive afferents that predominantly signal discriminative (myelinated A-beta) and affective (unmyelinated C-tactile) aspects of touch. It is well documented that discriminative abilities of touch decline with age.

View Article and Find Full Text PDF

Introduction: Intrapersonal touch is a powerful tool for communicating emotions and can among many things evoke feelings of eroticism and sexual arousal. The peripheral neural mechanisms of erotic touch signaling have been less studied. C tactile afferents (unmyelinated low-threshold mechanoreceptors), known to underpin pleasant aspects of touch processing, have been posited to play an important role.

View Article and Find Full Text PDF

Human skin is innervated with different tactile afferents, which are found at varying densities over the body. We investigate how the relationships between tactile pleasantness, sensitivity and discrimination differ across the skin. Tactile pleasantness was assessed by stroking a soft brush over the skin, using five velocities (0.

View Article and Find Full Text PDF

The perception of touch is complex and there has been a lack of ways to describe the full tactile experience quantitatively. Guest et al. (2011) developed a Touch Perception Task (TPT) in order to capture such experiences, and here we used the TPT to examine differences in sensory and emotional aspects of touch at different skin sites.

View Article and Find Full Text PDF

Human C-tactile (CT) afferents respond vigorously to gentle skin stroking and have gained attention for their importance in social touch. Pharmacogenetic activation of the mouse CT equivalent has positively reinforcing, anxiolytic effects, suggesting a role in grooming and affiliative behavior. We recorded from single CT axons in human participants, using the technique of microneurography, and stimulated a unit's receptive field using a novel, computer-controlled moving probe, which stroked the skin of the forearm over five velocities (0.

View Article and Find Full Text PDF

The influence of fingerprints and their curvature in tactile sensing performance is investigated by comparative analysis of different design parameters in a biomimetic artificial fingertip, having straight or curved fingerprints. The strength in the encoding of the principal spatial period of ridged tactile stimuli (gratings) is evaluated by indenting and sliding the surfaces at controlled normal contact force and tangential sliding velocity, as a function of fingertip rotation along the indentation axis. Curved fingerprints guaranteed higher directional isotropy than straight fingerprints in the encoding of the principal frequency resulting from the ratio between the sliding velocity and the spatial periodicity of the grating.

View Article and Find Full Text PDF

Tactile direction discrimination (TDD), the ability to determine the direction of an object's movement across the skin, is used clinically to detect and quantify tactile dysfunction. We have previously identified a cortical network for TDD based on skin stretch information that includes the second somatosensory, anterior insular and dorsolateral prefrontal cortices. In the present study we investigated cortical processing of TDD based on spatiotemporal cues.

View Article and Find Full Text PDF

We have investigated cortical processing of tactile direction discrimination (TDD) in a patient with unilateral tactile disturbance due to spinal cord lesion. The patient R.A.

View Article and Find Full Text PDF

Direction discrimination of a moving tactile stimulus requires intact dorsal columns and provides a sensitive clinical test of somatosensory dysfunction. Cortical mechanisms are poorly understood. We have applied tangential skin pulls to the right lower leg during functional magnetic resonance imaging.

View Article and Find Full Text PDF

People are good at telling the direction of a moving tactile stimulus and this capacity provides a sensitive clinical test of somatosensory disturbances. Tactile directional sensitivity depends on two different kinds of somatosensory information, i.e.

View Article and Find Full Text PDF