Altered microRNA profiles have been demonstrated in experimental models of type 2 diabetes, including in islets of the diabetic Goto-Kakizaki (GK) rat. Our bioinformatic analysis of conserved sequences in promoters of microRNAs, previously observed to be up-regulated in GK rat islets, revealed putative CGCG-core motifs on the promoter of the miR-212/miR-132 cluster, overexpression of which has been shown to increase insulin secretion. These motifs are possible targets of calmodulin binding transcription activators Camta1 and Camta2 that have been recognized as integrators of stress responses.
View Article and Find Full Text PDFMicroRNAs are central players in the control of insulin secretion, but their transcriptional regulation is poorly understood. Our aim was to investigate cAMP-mediated transcriptional regulation of the miR-212/miR-132 cluster and involvement of further upstream proteins in insulin secreting β-cells. cAMP induced by forskolin+IBMX or GLP-1 caused increased expression of miR-212/miR-132, and elevated phosphorylation of cAMP-response-element-binding-protein (CREB)/Activating-transcription-factor-1 (ATF1) and Salt-Inducible-Kinases (SIKs).
View Article and Find Full Text PDF