Publications by authors named "Helena Amaro"

Light quality is a key factor affecting algal growth and biomass composition, particularly pigments such as carotenoids, known for their antioxidant properties. Light-emitting diodes (LEDs) are becoming a cost-effective solution for indoor seaweed production when compared to fluorescent bulbs, allowing full control of the light spectra. However, knowledge of its effects on biomass production is still scarce.

View Article and Find Full Text PDF

Urban wastewater is a significant by-product of human activities. Conventional urban wastewater treatment plants have limitations in their treatment, mainly concerning the low removal efficiency of conventional and emerging contaminants. Discharged wastewater also contains harmful microorganisms, posing risks to public health, especially by spreading antibiotic-resistant bacteria and genes.

View Article and Find Full Text PDF

Water is the most valuable resource on the planet. However, massive anthropogenic activities generate threatening levels of biological, organic, and inorganic pollutants that are not efficiently removed in conventional wastewater treatment systems. High levels of conventional pollutants (carbon, nitrogen, and phosphorus), emerging chemical contaminants such as antibiotics, and pathogens (namely antibiotic-resistant ones and related genes) jeopardize ecosystems and human health.

View Article and Find Full Text PDF

is a cyanobacterium that has biotechnological potential thanks to its ability to synthesize several bioactive compounds of interest. Therefore, this study aimed to find optimal conditions, in terms of temperature (15-25 °C), pH (6.5-9.

View Article and Find Full Text PDF

Microalgae are known producers of antioxidant and anti-inflammatory compounds, making them natural alternatives to be used as food and feed functional ingredients. This study aimed to valorise biomass and exploit new applications and commercial value for four commercially available microalgae: , sp., sp.

View Article and Find Full Text PDF

PC is a bioactive and colorant compound widely sought in the food, nutraceutical and cosmetic industries, and one of the most important pigments produced by . However, the general extraction process is usually time-consuming and expensive, with low extraction yields-thus compromising a feasible and sustainable bioprocess. Hence, new extraction technologies (e.

View Article and Find Full Text PDF

Aim Of This Study: The major aim of this work was to consistently optimize the production of biomass of the dinoflagellate Karlodinium veneficum and evaluate its extracts biotechnological potential application towards food, nutraceutical or/and pharmaceutical industries.

Methods And Results: A successful approach of biomass production of K. veneficum CCMP 2936 was optimized along with the chemical characterization of its metabolite profile.

View Article and Find Full Text PDF

Bioactive lipidic compounds of microalgae, such as polyunsaturated fatty acids (PUFA) and carotenoids, can avoid or treat oxidation-associated conditions and diseases like inflammation or cancer. This study aimed to assess the bioactive potential of lipidic extracts obtained from sp.-using Generally Recognized as Safe (GRAS) solvents like ethanol, acetone, hexane:isopropanol (3:2) (HI) and ethyl lactate.

View Article and Find Full Text PDF

Unlabelled: Gender similarities have been detected in various sexual behaviors and attitudes in young adults, but persistent differences remain regarding casual sexual relationships (CSRs), with women feeling different external pressures than men. We set out to study the spontaneous references made to gender similarities and differences towards CSRs in eight focus group interviews ( = 35 college-students, aged 18-28) about the characteristics of CSRs within a social-role framework. The thematic analysis led us to the interpretation that there is an ongoing change in the acceptability of these relationships, leading to the emergence of a single sexual standard - mostly liberal, but at times also conservative.

View Article and Find Full Text PDF

Cyanobacteria pigments, in special carotenoids and phycobiliproteins, are usually used in industry as raw extracts, although there is still no standard methodology for their extraction. For the co-extraction of carotenoids and phycobiliproteins from the marine cyanobacterium Cyanobium sp., a continuous pressurized solvent extraction (CPSE) system and an electric fields-assisted extraction system based in ohmic heating were optimized using Central Composite Designs, with three factors each: time (t), temperature (T) and, flow (f) for CPSE; and time, temperature and frequency (F) for ohmic heating.

View Article and Find Full Text PDF

Phycobiliproteins are a group of water soluble proteins with an associated chromophore, responsible for the light-harvesting in cyanobacteria. They are divided in four main types: phycoerythrin, phycocyanin, phycoerythrocyanin and allophycocyanin, and they are characterized according to their structure and light quality absorption. Phycobiliproteins from cyanobacteria have been described as potential bioactive compounds, and recognized as high-valued natural products for biotechnological applications.

View Article and Find Full Text PDF

The nutraceutical potential of microalgae boomed with the exploitation of new species and sustainable extraction systems of bioactive compounds. Thus, a laboratory-made continuous pressurized solvent extraction system (CPSE) was built to optimize the extraction of antioxidant compounds, such as carotenoids and PUFA, from a scarcely studied prokaryotic microalga, sp. Following "green chemical principles" and using a GRAS solvent (ethanol), biomass amount, solvent flow-rate/pressure, temperature and solvent volume-including solvent recirculation-were sequentially optimized, with the carotenoids and PUFA content and antioxidant capacity being the objective functions.

View Article and Find Full Text PDF

Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components-especially carotenoids and polyunsaturated fatty acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS(+•))) and biological reactive species (O₂(•)⁻ and (•)NO⁻). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.

View Article and Find Full Text PDF

A renewed interest in antioxidants has arisen in recent years; microalgae and cyanobacteria are potential sources thereof for use as food/feed ingredients. However, improved methods for comprehensive screening of antioxidant capacity specifically in intracellular extracts of marine microorganisms are required - encompassing lipophilic and hydrophilic compounds simultaneously. The original ABTS method was thus improved, and in particular the procedures of cell disruption and storage were optimized.

View Article and Find Full Text PDF

Gastrointestinal cancers rank second in overall cancer-related deaths. Carotenoids, sulfated polysaccharides, and polyunsaturated fatty acids (PUFAs) from microalgae exhibit cancer chemopreventive features at different stages of carcinogenesis. For instance, sulfated polysaccharides bear a prophylactic potential via blocking adhesion of pathogens to the gastric surface, whereas carotenoids are effective against Helicobacter pylori infection.

View Article and Find Full Text PDF

Molecular hydrogen (H(2)) obtained from biological sources provides an alternative to bulk chemical processes that is moving towards large-scale, economical generation of clean fuel for automotive engines. This opinion article examines recent improvements in H(2) production by wild and mutant strains of Chlamydomonas reinhardtii - the green microalga currently considered the best eukaryotic H(2) producer. Here, we review various aspects of genetic and metabolic engineering of C.

View Article and Find Full Text PDF

Marine microalgae constitute a natural source of a variety of drugs for pharmaceutical, food and cosmetic applications-which encompass carotenoids, among others. A growing body of experimental evidence has confirmed that these compounds can play important roles in prevention (and even treatment) of human diseases and health conditions, e.g.

View Article and Find Full Text PDF

Reactive forms of oxygen can damage DNA (among other molecules), thus triggering, e.g., atherogenesis and carcinogenesis.

View Article and Find Full Text PDF

Microalgae have found commercial applications as natural sources of valuable macromolecules, including carotenoids, long-chain polyunsaturated fatty acids, and phycocolloids. As photoautotrophs, their simple growth requirements make them attractive for bioprocesses aimed at producing high added-value compounds that are in large demand by the pharmaceutical market. A few compounds synthesized by microalgae have indeed proven to possess anti-inflammatory, antiviral, antimicrobial, and antitumoral features; astaxanthin, a known antioxidant produced by Haematococcus pluvialis, is an illustrative example with important anti-inflammatory and antitumoral roles.

View Article and Find Full Text PDF