Using molecular dynamics, we study the self-assembly of phenylalanine with charged end-groups at various temperatures and concentrations. As in the case of diphenylalanine, we observe the formation of nanotubes; however, phenylalanine aggregates in layers of four, not six, molecules. The observed aggregates are consistent with recent experimental measurements of fibrils obtained from mice with phenylketonuria.
View Article and Find Full Text PDFBased on recently published initial experimental results on the intercalation of a class of broad spectrum antiparasitic compounds, we present a purely theoretical approach for determining if these compounds may preferentially intercalate with guanosine/cytosine (GC)-rich or adenosine/thymidine (TA)-rich regions of DNA. The predictive model presented herein is based upon utilization of density functional theory (DFT) to determine a priori how the best intercalator may energetically and sterically interact with each of the nucleoside base pairs. A potential new method using electrostatic potential maps (EPMs) to visually select the best poses is introduced and compared to the existing brute-force center of mass (COM) approach.
View Article and Find Full Text PDF