Machine learning (ML) is widely used in classification tasks aimed at detecting various cognitive states or neurological diseases using noninvasive electroencephalogram (EEG) time series. However, successfully detecting specific cognitive skills in a healthy population, independent of subject, remains challenging. This study compared the subject-independent classification performance of three different pipelines: supervised and Riemann projections with logistic regression and handcrafted power spectral features with light gradient boosting machine (LightGBM).
View Article and Find Full Text PDF