Hydrostatic pressure is an important physical stimulus which can cause various responses in bacterial cells. The survival and cellular processes of Escherichia coli under hydrostatic pressures between 10 MPa and 110 MPa have been studied. However, understanding bacterial responses to moderately elevated pressure of up to 10 MPa is useful for a range of different applications including for example in smart and responsive materials.
View Article and Find Full Text PDFIn this paper, we describe the first steps in the design of a synthetic biological system based on the use of genetically modified bacteria to detect elevated pressures in soils and respond by cementing soil particles. Such a system might, for example, enable a self- constructed foundation to form in response to load using engineered bacteria which could be seeded and grown in the soils. This process would reduce the need for large-scale excavations and may be the basis for a new generation of self-assembling and responsive bio-based materials.
View Article and Find Full Text PDF