AbstractFrom biofilms to whale pods, organisms across taxa live in groups, thereby accruing numerous diverse benefits of sociality. All social organisms, however, pay the inherent cost of increased resource competition. One expects that when resources become scarce, this cost will increase, causing group sizes to decrease.
View Article and Find Full Text PDFJ R Soc Interface
August 2022
Coordinated movement in animal groups (flocks, schools, herds, etc.) is a classic and well-studied form of collective behaviour. Most theoretical studies consider agents in unobstructed spaces; however, many animals move in often complicated environments and must navigate around and through obstacles.
View Article and Find Full Text PDFBiological systems must adjust to changing external conditions, and their resilience depends on their control mechanisms. How is dynamic control implemented in noisy, decentralized systems? Army ants' self-assembled bridges are built on unstable features, like leaves, which frequently move. Using field experiments and simulations, we characterize the bridges' response as the gaps they span change in size, identify the control mechanism, and explore how this emerges from individuals' decisions.
View Article and Find Full Text PDFThe postdoctoral workforce comprises a growing proportion of the science, technology, engineering and mathematics (STEM) community, and plays a vital role in advancing science. Postdoc professional development, however, remains rooted in outdated realities. We propose enhancements to postdoc-centred policies and practices to better align this career stage with contemporary job markets and work life.
View Article and Find Full Text PDFSome ant species cooperatively transport a wide range of extremely large, heavy food objects of various shapes and materials. While previous studies have examined how object mass and size affect the recruitment of additional workers, less is understood about how these attributes affect the rest of the transport process. Using artificial baits with independently varying mass and size, we reveal their effects on cooperative transport in across two transport challenges: movement initiation and obstacle navigation.
View Article and Find Full Text PDFEffective mentoring is a key component of academic and career success that contributes to overall measures of productivity. Mentoring relationships also play an important role in mental health and in recruiting and retaining students from groups underrepresented in STEM fields. Despite these clear and measurable benefits, faculty generally do not receive mentorship training, and feedback mechanisms and assessment to improve mentoring in academia are limited.
View Article and Find Full Text PDFGroup cohesion and consensus have primarily been studied in the context of discrete decisions, but some group tasks require making serial decisions that build on one another. We examine such collective problem solving by studying obstacle navigation during cooperative transport in ants. In cooperative transport, ants work together to move a large object back to their nest.
View Article and Find Full Text PDFCoordinated collective behaviors often emerge from simple rules governing the interactions of individuals in groups. We model mechanisms of coordination among ants during cooperative transport, a challenging task that requires a consensus on travel direction. Our goal is to determine whether groups following simple behavioral rules can reach a consensus using minimal information.
View Article and Find Full Text PDFA recent study of social recognition in crickets shows that decorated cricket females use self-referenced recognition information in their choice of mates. This allows the polyandrous females to choose novel, diverse mates.
View Article and Find Full Text PDFThe genetic structure of natural bacteriophage populations is poorly understood. Recent metagenomic studies suggest that phage biogeography is characterized by frequent migration. Using virus samples mostly isolated in Southern California, we recently showed that very little population structure exists in segmented RNA phage of the Cystoviridae family due to frequent segment reassortment (sexual genetic mixis) between unrelated virus individuals.
View Article and Find Full Text PDF