Numerical models of the cardiovascular system have largely focused on the function of the ventricles, with atrial function often neglected. Furthermore, the time-varying elastance method that prescribes the pressure-volume relationship rather than calculating it consistently is frequently used for the ventricles and atrium. This method has yet to be validated however, so its applicability for cardiac modelling is frequently questioned.
View Article and Find Full Text PDFIpratropium bromide, a nonselective muscarinic antagonist, is widely prescribed for the treatment of chronic obstructive pulmonary disease (COPD). Analyses of COPD patients, with underlying ischaemic heart disease, receiving anticholinergics, have indicated increased risk of severity and occurrence of cardiovascular events (including myocardial infarction). The present study explored whether ipratropium bromide induces myocardial injury in nonclinical models of simulated myocardial ischaemia/reperfusion injury.
View Article and Find Full Text PDFPurpose: 2-CL-IB-MECA, (A3 adenosine receptor agonist)(A3AR) mediated cardioprotection is well documented although the associated intracellular signalling pathways remain unclear. Here we demonstrate a role of the pro-survival signalling pathways MEK1/2-ERK1/2 and PI3K/AKT and their effect on modifying Caspase-3 activity in A3AR mediated cardioprotection.
Methods: Isolated perfused rat hearts or primary adult rat cardiac myocytes were subjected to ischaemia/hypoxia and reperfusion/reoxygenation, respectively.
Objective: We compared the effects of two sulphonylureas, glibenclamide and gliclazide, on ischaemic preconditioning (IPC) and nicorandil-induced protection in the in-vivo rat. We also studied the effects of these agents on the membrane potential of isolated rat mitochondria.
Methods: Anaesthetised male Sprague-Dawley rats were used in an open chest model of myocardial infarction.
Guinea pig isolated working hearts were exposed to 30-min ischaemia by reducing coronary flow to 10%, followed by reperfusion. Aortic output fell to 4.5+/-4.
View Article and Find Full Text PDFObjective: Nitric oxide (NO) is reported to be both protective and detrimental in models of myocardial ischaemia/reperfusion injury, which may be concentration dependent. Our objective was to characterise this dichotomy using the nitric oxide donor, S-nitroso N-acetyl penicillamine (SNAP) in isolated perfused mouse heart and isolated mouse cardiac mitochondria.
Methods: To determine the effect of nitric oxide concentration on myocardial viability, isolated mouse hearts were subjected to 35 min global ischaemia and 30 min reperfusion in the presence of SNAP (0.
Am J Physiol Heart Circ Physiol
October 2002
Ischemia-reperfusion induces both necrotic and apoptotic cell death. The ability of adenosine to attenuate reperfusion-induced injury (RI) and the role played by adenosine receptors are unclear. We therefore studied the role of the A(3) receptor (A(3)R) in ameliorating RI using the specific A(3)R agonist 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxi-N-methyl-b-D-ribofuranuronamide (2-Cl-IB-MECA).
View Article and Find Full Text PDFObjective: We propose that ischemic preconditioning (IPC) and mitochondrial K(ATP) channel activation protect the myocardium by inhibiting mitochondrial permeability transition pore (MPTP) opening at reperfusion.
Methods: Isolated rat hearts were subjected to 35 min ischemia/120 min reperfusion and assigned to the following groups: (1) control; (2) IPC of 2x5 min each of preceding global ischemia; (3,4,5) 0.2 micromol/l cyclosporin A (CsA, which inhibits MPTP opening), 5 micromol/l FK506 (which inhibits the phosphatase calcineurin without inhibiting MPTP opening), or 20 micromol/l atractyloside (Atr, a MPTP opener) given at reperfusion; (6,7) pre-treatment with 30 micromol/l diazoxide (Diaz, a mitochondrial K(ATP) channel opener) or 200 nmol/l 2 chloro-N(6)-cyclopentyl-adenosine (CCPA, an adenosine A1 receptor agonist); (8) IPC+Atr; (9) Diaz+Atr; (10) CCPA+Atr.
The hypothesis that the coronary vasodilator effects of adenosine receptor agonists are independent of the vascular endothelium or mediators derived therefrom was examined in guinea-pig isolated working hearts. Adenosine receptor agonists, 5'-(N-ethylcarboxamido)-adenosine (NECA; two-fold selective for A2 over A1 receptors), 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680; A2A selective), N6-cyclopentyl-adenosine (CPA; A1 selective) and N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; A3 selective), were infused (3 x 10(-7) M) after endothelium removal by passing oxygen through the coronary circulation. In spontaneously beating hearts, CGS21680 and NECA increased, while CPA decreased, coronary flow.
View Article and Find Full Text PDF