Publications by authors named "Helen J Ougham"

Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks.

View Article and Find Full Text PDF

Leaf colour change is commonly observed in temperate deciduous forests in autumn. This is not simply a side effect of leaf senescence, and, in the past decade, several hypotheses have emerged to explain the evolution of autumn colours. Yet a lack of crosstalk between plant physiologists and evolutionary ecologists has resulted in slow progress, and so the adaptive value of this colour change remains a mystery.

View Article and Find Full Text PDF

A maize (Zea mays) senescence-associated legumain gene, See2beta, was characterized at the physiological and molecular levels to determine its role in senescence and resource allocation. A reverse-genetics screen of a maize Mutator (Mu) population identified a Mu insertion in See2beta. Maize plants homozygous for the insertion were produced.

View Article and Find Full Text PDF

The color changes that occur during foliar senescence are directly related to the regulation of nutrient mobilization and resorption from leaf cells, often under conditions of biotic and abiotic stress. Chlorophyll is degraded through a metabolic pathway that becomes specifically activated in senescence. Chlorophyll catabolic enzymes and genes have been identified and characterized and aspects of their regulation analyzed.

View Article and Find Full Text PDF

This article evaluates features of leaf and flower senescence that are shared with, or are different from, those of other terminal events in plant development. Alterations of plastid structure and function in senescence are often reversible and it is argued that such changes represent a process of transdifferentiation or metaplasia rather than deterioration. It may be that the irreversible senescence of many flowers and some leaves represents the loss of ancestral plasticity during evolution.

View Article and Find Full Text PDF

Cell division was examined during leaf initiation in the slow-to-green mutant of Lolium temulentum L. to test the hypothesis that the cell cycle in the leaf primordium is a key regulator of the well characterized reduction in final leaf length in the mutant compared with that of the wild type. The cell doubling time (cdt, by colchicine method) was substantially longer in the youngest leaf primordium (YLP) of the mutant (107 h) than in the wild type (43 h) although the duration of the most rapid cell cycle (cc, by percentage labelled mitoses method) was between 18-20 h in each.

View Article and Find Full Text PDF

In this review, changes in plant gene expression in response to environmental stresses are discussed using the examples of high and low temperature treatments. While some changes may contribute to acclimatory processes which improve plant survival or performance under stress, others may be 'shock' responses indicative of sensitivity. The heat-shock response, which is almost ubiquitous among eukaryotic organisms, is characterized by repression of normal cellular protein synthesis mediated at both the transcriptional and the translational level, and induction of heat-shock protein (HSP) synthesis.

View Article and Find Full Text PDF

A nuclear-gene mutation of the C3 grass Lolium temulentum L., which arose following cell suspension culture and plant regeneration, is manifested as delayed and incomplete greening, which occurs from the leaf tip downwards. Many plastids in the mutant exhibit abnormal morphology when examined by transmission electron microscopy; the plastid outer envelope lacks integrity and thylakoids, while still stacked, are spread over a wide area surrounded by diffuse stromal contents.

View Article and Find Full Text PDF