The introduction of a stand-alone Bone Bank in our Regional Orthopaedic Hospital has improved the availability of femoral head allograft. Benninger et al. (Bone Joint J 96-B:1307-1311, 2014), demonstrated their institutions bank to be cost effective despite a 30 % discard rate for harvested allograft.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2015
As peri-prosthetic infection is one of the most devastating complications associated with implant placement, we have reasoned that such infection can be largely subverted by development of antibacterial implants. Our previous work demonstrated that covalent coupling of vancomycin to titanium alloy prevented colonization by the Gram-positive pathogens, Staphylococcus aureus and Staphylococcus epidermidis. Some orthopedic devices, including permanent prosthesis anchors, and most dental implants are transcutaneous or transmucosal and can be prone to colonization by Gram-negative pathogens.
View Article and Find Full Text PDFPeri-prosthetic infections are notoriously difficult to treat as the biomaterial implant is ideal for bacterial adhesion and biofilm formation, resulting in decreased antibiotic sensitivity. Previously, we reported that vancomycin covalently attached to a Ti alloy surface (Vanc-Ti) could prevent bacterial colonization. Herein we examine the effect of this Vanc-Ti surface on Staphylococci epidermidis, a Gram-positive organism prevalent in orthopaedic infections.
View Article and Find Full Text PDFIt is known that Escherichia coli K-12 is cryptic (Phn-) for utilization of methyl phosphonate (MePn) and that Phn+ variants can be selected for growth on MePn as the sole P source. Variants arise from deletion via a possible slip strand mechanism of one of three direct 8-bp repeat sequences in phnE, which restores function to a component of a putative ABC type transporter. Here we show that Phn+ variants are present at the surprisingly high frequency of >10(-2) in K-12 strains.
View Article and Find Full Text PDF