Publications by authors named "Helen C Turner"

High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal epithelial barrier dysfunction, and aberrant inflammatory responses. In addition, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, reduction in the abundance of beneficial commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no FDA-approved countermeasures that can treat radiation-induced GI injury.

View Article and Find Full Text PDF
Article Synopsis
  • A large radiological event may hinder quick sample collection, making rapid bioassays necessary for individual dose assessment days after exposure.
  • This study tested a biomarker panel of specific blood proteins and cell counts in irradiated mice to classify exposure and estimate radiation doses within a week.
  • The results indicated high accuracy in distinguishing exposure levels and reconstructing doses, suggesting that this biomarker assay could effectively assess radiation exposure in individuals.
View Article and Find Full Text PDF

There are currently no available FDA-cleared biodosimetry tools for rapid and accurate assessment of absorbed radiation dose following a radiation/nuclear incident. Previously we developed a protein biomarker-based FAST-DOSE bioassay system for biodosimetry. The aim of this study was to integrate an ELISA platform with two high-performing FAST-DOSE biomarkers, BAX and DDB2, and to construct machine learning models that employ a multiparametric biomarker strategy for enhancing the accuracy of exposure classification and radiation dose prediction.

View Article and Find Full Text PDF

In large-scale radiation exposure events, the ability to triage potential victims by the received radiation dosage is crucial. This can be evaluated by radiation-induced biological changes. Radiation-responsive mRNA is a class of biomarkers that has been explored for dose-dependency with methods such as RT-qPCR.

View Article and Find Full Text PDF

After a large-scale radiological or nuclear event, hundreds of thousands of people may be exposed to ionizing radiation and require subsequent medical management. Acute exposure to moderate doses (2-6 Gy) of radiation can lead to the hematopoietic acute radiation syndrome, in which the bone marrow (BM) is severely compromised, and severe hemorrhage and infection are common. Previously, we have developed a panel of intracellular protein markers (FDXR, ACTN1, DDB2, BAX, p53 and TSPYL2), designed to reconstruct absorbed radiation dose from human peripheral blood (PB) leukocyte samples in humanized mice up to 3 days after exposure.

View Article and Find Full Text PDF

In the event of a widespread radiological incident, thousands of individuals will require rapid assessment of exposure using validated biodosimetry assays to inform clinical triage. In this scenario, multiple biodosimetry laboratories may be necessary for large-volume sample processing. To meet this need, we have developed a high-throughput assay for the rapid measurement of intracellular protein biomarkers in human peripheral blood samples using an Imaging Flow Cytometry (IFC) platform.

View Article and Find Full Text PDF

The cytokinesis-block micronucleus (CBMN) assay is an established method for assessing chromosome damage in human peripheral blood lymphocytes resulting from exposure to genotoxic agents such as ionizing radiation. The objective of this study was to measure cytogenetic DNA damage and hematology parameters in vivo based on MN frequency in peripheral blood lymphocytes (PBLs) from adult and pediatric leukemia patients undergoing hematopoietic stem cell transplantation preceded by total body irradiation (TBI) as part of the conditioning regimen. CBMN assay cultures were prepared from fresh blood samples collected before and at 4 and 24 h after the start of TBI, corresponding to doses of 1.

View Article and Find Full Text PDF

Testing and validation of biodosimetry assays is routinely performed using conventional dose rate irradiation platforms, at a dose rate of approximately 1 Gy/min. In contrast, the exposures from an improvised nuclear device will be delivered over a large range of dose rates with a prompt irradiation component, delivered in less than 1 μs, and a protracted component delivered over hours and days. We present preliminary data from a large demographic study we have undertaken for investigation of age, sex and dose rate effects on dicentric and micronucleus yields.

View Article and Find Full Text PDF

Following a mass-casualty nuclear/radiological event, there will be an important need for rapid and accurate estimation of absorbed dose for biological triage. The cytokinesis-block micronucleus (CBMN) assay is an established and validated cytogenetic biomarker used to assess DNA damage in irradiated peripheral blood lymphocytes. Here, we describe an intercomparison experiment between two biodosimetry laboratories, located at Columbia University (CU) and Health Canada (HC) that performed different variants of the human blood CBMN assay to reconstruct dose in human blood, with CU performing the assay on isolated lymphocytes and using semi-automated scoring whereas HC used the more conventional whole blood assay.

View Article and Find Full Text PDF

In the event of a widespread radiological incident, thousands of people may be exposed to a wide range of ionizing radiation. In this unfortunate scenario, there will be a need to quickly screen a large number of people to assess the amount of radiation exposure and triage for medical treatment. In our earlier work, we previously identified and validated a panel of radiosensitive protein biomarkers in blood leukocytes, using the humanized-mouse and non-human primate (NHP) models.

View Article and Find Full Text PDF

The cytokinesis-block micronucleus assay is a well-established method to assess radiation-induced genetic damage in human cells. This assay has been adapted to imaging flow cytometry (IFC), allowing automated analysis of many cells, and eliminating the need to create microscope slides. Furthermore, to improve the efficiency of assay performance, a small-volume method previously developed was employed.

View Article and Find Full Text PDF

Background: Standard Breast Cancer (BC) risk prediction models based only on epidemiologic factors generally have quite poor performance, and there have been a number of risk scores proposed to improve them, such as AI-based mammographic information, polygenic risk scores and pathogenic variants. Even with these additions BC risk prediction performance is still at best moderate. In that decreased DNA repair capacity (DRC) is a major risk factor for development of cancer, we investigated the potential to improve BC risk prediction models by including a measured phenotypic DRC assay.

View Article and Find Full Text PDF

The γ-H2AX assay is a sensitive and reliable method to evaluate radiation-induced DNA double-strand breaks. The conventional γ-H2AX assay detects individual nuclear foci manually, but is labor-intensive and time-consuming, and hence unsuitable for high-throughput screening in cases of large-scale radiation accidents. We have developed a high-throughput γ-H2AX assay using imaging flow cytometry.

View Article and Find Full Text PDF

Background: Non-human primates, such as Rhesus macaques, are a powerful model for studies of the cellular and physiological effects of radiation, development of radiation biodosimetry, and for understanding the impact of radiation on human health. Here, we study the effects of 4 Gy total body irradiation (TBI) at the molecular level out to 28 days and at the cytogenetic level out to 56 days after exposure. We combine the global transcriptomic and proteomic responses in peripheral whole blood to assess the impact of acute TBI exposure at extended times post irradiation.

View Article and Find Full Text PDF

Peripheral blood mononuclear cells (PBMCs) are a useful model for biochemical assays, particularly for etiological studies. We describe here a method for measuring DNA repair capacity (DRC) in archival cryogenically preserved PBMCs. To model DRC, we measured γ-H2AX repair kinetics in thawed PBMCs after irradiation with 3 Gy gamma rays.

View Article and Find Full Text PDF

During a large-scale radiological event such as an improvised nuclear device detonation, many survivors will be shielded from radiation by environmental objects, and experience only partial-body irradiation (PBI), which has different consequences, compared with total-body irradiation (TBI). In this study, we tested the hypothesis that applying machine learning to a combination of radiation-responsive biomarkers (ACTN1, DDB2, FDXR) and B and T cell counts will quantify and distinguish between PBI and TBI exposures. Adult C57BL/6 mice of both sexes were exposed to 0, 2.

View Article and Find Full Text PDF

A large-scale malicious or accidental radiological event can expose vast numbers of people to ionizing radiation. The dicentric chromosome (DCA) and cytokinesis-block micronucleus (CBMN) assays are well-established biodosimetry methods for estimating individual absorbed doses after radiation exposure. Here we used machine learning (ML) to test the hypothesis that combining automated DCA and CBMN assays will improve dose reconstruction accuracy, compared with using either cytogenetic assay alone.

View Article and Find Full Text PDF

Detonation of an improvised nuclear device highlights the need to understand the risk of mixed radiation exposure as prompt radiation exposure could produce significant neutron and gamma exposures. Although the neutron component may be a relatively small percentage of the total absorbed dose, the large relative biological effectiveness (RBE) can induce larger biological DNA damage and cell killing. The objective of this study was to use a hematopoietically humanized mouse model to measure chromosomal DNA damage in human lymphocytes 24 h after in vivo exposure to neutrons (0.

View Article and Find Full Text PDF

We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct neutron doses in mixed neutron + photon exposures, which are expected in improvised nuclear device detonations. Such individualized reconstructions are crucial for triage and treatment because neutrons are more biologically damaging than photons. We used a high-throughput micronucleus assay with automated scanning/imaging on lymphocytes from human blood ex-vivo irradiated with 44 different combinations of 0-4 Gy neutrons and 0-15 Gy photons (542 blood samples), which include reanalysis of past experiments.

View Article and Find Full Text PDF

In the long term, Cs is probably the most biologically important agent released in many accidental (or malicious) radiation disasters. It can enter the food chain, and be consumed, or, if present in the environment (e.g.

View Article and Find Full Text PDF

Inhalation and ingestion of 137Cs and other long-lived radionuclides can occur after large-scale accidental or malicious radioactive contamination incidents, resulting in a complex temporal pattern of radiation dose/dose rate, influenced by radionuclide pharmacokinetics and chemical properties. High-throughput radiation biodosimetry techniques for such internal exposure are needed to assess potential risks of short-term toxicity and delayed effects (e.g.

View Article and Find Full Text PDF

Internal contamination by radionuclides may constitute a major source of exposure and biological damage after radiation accidents and potentially in a dirty bomb or improvised nuclear device scenario. We injected male C57BL/6 mice with radiolabeled cesium chloride solution (137CsCl) to evaluate the biological effects of varying cumulative doses and dose rates in a two-week study. Injection activities of 137CsCl were 5.

View Article and Find Full Text PDF

Following a large-scale radiological incident, there is a need for FDA-approved biodosimetry devices and biomarkers with the ability to rapidly determine past radiation exposure with sufficient accuracy for early population triage and medical management. Towards this goal, we have developed FAST-DOSE (Fluorescent Automated Screening Tool for Dosimetry), an immunofluorescent, biomarker-based system designed to reconstruct absorbed radiation dose in peripheral blood samples collected from potentially exposed individuals. The objective of this study was to examine the performance of the FAST-DOSE assay system to quantify intracellular protein changes in blood leukocytes for early biodosimetry triage from humanized NOD-scid-gamma (Hu-NSG) mice and non-human primates (NHPs) exposed to ionizing radiation up to 8 days after radiation exposure.

View Article and Find Full Text PDF

Biodosimetry-based individualized reconstruction of complex irradiation scenarios (partial-body shielding and/or neutron + photon mixtures) can improve treatment decisions after mass-casualty radiation-related incidents. We used a high-throughput micronucleus assay with automated scanning and imaging software on ex-vivo irradiated human lymphocytes to: a) reconstruct partial-body and/or neutron exposure, and b) estimate separately the photon and neutron doses in a mixed exposure. The mechanistic background is that, compared with total-body photon irradiations, neutrons produce more heavily-damaged lymphocytes with multiple micronuclei/binucleated cell, whereas partial-body exposures produce fewer such lymphocytes.

View Article and Find Full Text PDF