Diaminocarboxylic acid carrier ampholytes, such as L-histidine, 2,3-diaminopropionic acid, L-ornithine, and L-lysine, were reacted with glycerol-1,3-diglycidyl ether (GDGE) and poly(vinyl alcohol) (PVA) in the presence of sodium hydroxide to produce hydrolytically and mechanically stable hydrogels, supported on a PVA substrate, for use as buffering membranes in isoelectric trapping (IET) separations. The pH values of the DACAPVA membranes were determined with the help of small-molecule pI markers and proteins and were found to be in the 6 < pH < 8.5 range.
View Article and Find Full Text PDFAlkali-stable, high-pI isoelectric membranes have been synthesized from quaternary ammonium derivatives of cyclodextrins and poly(vinyl alcohol), and bifunctional cross-linkers, such as glycerol-1,3-diglycidyl ether. The new, high-pI isoelectric membranes were successfully applied as cathodic membranes in isoelectric trapping separations in place of the hydrolytically more labile, polyacrylamide-based cathodic isoelectric membranes, and permitted the use of catholytes as alkaline as 1 M NaOH. The new high-pI isoelectric membranes have shown excellent mechanical stability, low electric resistance and long life times, even when subjected to electrophoresis with current densities as high as 80 mA/cm2.
View Article and Find Full Text PDF