Gestational diabetes (GDM), defined as hyperglycemia with onset or initial recognition during pregnancy, has a rising prevalence paralleling the rise in type 2 diabetes (T2DM) and obesity. GDM is associated with short-term and long-term consequences for both mother and child. Therefore, it is crucial we efficiently identify all cases and initiate early treatment, reducing fetal exposure to hyperglycemia and reducing GDM-related adverse pregnancy outcomes.
View Article and Find Full Text PDFBackground: PGF2alpha exerts a significant contractile effect on myometrium and is central to human labour. THG113.31, a specific non-competitive PGF2alpha receptor (FP) antagonist, exerts an inhibitory effect on myometrial contractility.
View Article and Find Full Text PDFContext: Beta3-adrenoreceptor modulation in human myometrium during pregnancy is linked functionally to myometrial inhibition. Maxi-K+ channels (BK(Ca)) play a significant role in modulating cell membrane potential and excitability.
Objective: This study was designed to investigate the potential involvement of BK(Ca) channel function in the response of human myometrium to beta3-adrenoceptor activation.
The uterorelaxant effect of human chorionic gonadotropin (hCG) is regarded as an important mediator in maintenance of uterine quiescence during pregnancy with clinical potential for tocolysis, the mechanisms of which are unknown. The large conductance calcium-activated K(+) channel (BK(Ca)) is ubiquitously encountered in human uterine tissue and plays a significant role in modulating myometrial cell membrane potential and excitability. The objective of this study was to investigate the involvement of BK(Ca) channel function in the response of human myometrial cells to hCG.
View Article and Find Full Text PDF