The analytical performance of an enhanced surface area electrolyte insulator semiconductor (EIS) device was investigated for DNA sensor development. The work endeavored to advance EIS performance by monitoring the effect of DNA probe layers have on the impedimetric signal during target hybridisation detection. Two universally employed covalent chemistries, direct and spacer-mediated attachment of amino modified probe molecules to amino-functionalised surfaces were investigated.
View Article and Find Full Text PDFBiosens Bioelectron
October 2005
Investigation of nucleic acid interactions was performed using dual polarization interferometry, a novel approach to elucidating molecular interactions. This paper presents a preliminary study of adsorption of single stranded DNA onto functionalised silicon oxynitride, compared with covalent linkage, and avidin-biotin immobilisation. The effect of probe concentration on hybridisation efficiency was also examined.
View Article and Find Full Text PDFThe aim of this work was to develop an integrated solution to DNA hybridisation monitoring for diagnostics on a monolithic silicon platform. A fabrication process was developed incorporating a gold initiation electrode patterned directly onto a PIN photodiode detector. Patterned interdigitated type electrodes exhibited the smallest reduction in photodiode sensitivity, therefore these were chosen as the ECL initiator design.
View Article and Find Full Text PDFAn investigation of the fabrication of microporous silicon (MPS) layers as a material for the development of an electrolyte insulator semiconductor (EIS) capacitance sensor has been performed. The goal was to create a high surface area substrate for the immobilisation of biorecognition elements. Structural analysis of MPS layers as a function of key etch parameters, namely implant type (p or n), implant dose, hydrofluoric acid (HF) etch concentration and current density has been performed using scanning electron microscopy (SEM).
View Article and Find Full Text PDFContinuous flow microreactors with an annular microchannel for cyclical chemical reactions were fabricated by either bulk micromachining in silicon or by rapid prototyping using EPON SU-8. Fluid propulsion in these unusual microchannels was achieved using AC magnetohydrodynamic (MHD) actuation. This integrated micropumping mechanism obviates the use of moving parts by acting locally on the electrolyte, exploiting its inherent conductive nature.
View Article and Find Full Text PDFPalladium(II)-coproporphyrin label and a set of corresponding monofunctional labeling reagents with different linker arms were evaluated for labeling of oligonucleotides and subsequent use in hybridization assays. The properties of resulting oligonucleotide probes including phosphorescence spectra, quantum yields, lifetimes, and labeling yields were examined as functions of the label and oligonucleotide structures. Upon hybridization with complementary sequences bearing dabcyl, QSY-7, and rhodamine green dyes, the probes displayed strong quenching due to close proximity effects.
View Article and Find Full Text PDF