Publications by authors named "Helen Anni"

Mitochondrial (mt) dysfunction in gliomas has been linked to abnormalities of mt energy metabolism, marked by a metabolic shift from oxidative phosphorylation to glycolysis ("Warburg effect"), disturbances in mt membrane potential regulation and apoptotic signaling, as well as to somatic mutations involving the Krebs cycle enzyme isocitrate dehydrogenase. Evolving biological concepts with potential therapeutic implications include interaction between microtubule proteins and mitochondria (mt) in the control of closure of voltage-dependent anion channels and in the regulation of mt dynamics and the mt-endoplasmic reticulum network. The cytoskeletal protein βIII-tubulin, which is overexpressed in malignant gliomas, has emerged as a prosurvival factor associated in part with mt and also as a marker of chemoresistance.

View Article and Find Full Text PDF

Background: Ethanol is a toxin responsible for the neurodevelopmental deficits of Fetal Alcohol Spectrum Disorders (FASD). Recent evidence suggests that ethanol modulates the protein expression of lineage specifier transcription factors Oct4 (Pou5f1) and Sox2 in early stages of mouse embryonic stem (ES) cell differentiation. We hypothesized that ethanol induced an imbalance in the expression of Oct4 and Sox2 in early differentiation, that dysregulated the expression of associated and target genes and signaling molecules and diverted cells from neuroectodermal (NE) formation.

View Article and Find Full Text PDF

The transcription factors Sox2, Oct4, and Nanog regulate within a narrow dose-range embryonic stem (ES) cell pluripotency and cell lineage commitment. Excess of Oct4 relative to Sox2 guides cells to mesoendoderm (ME), while abundance of Sox2 promotes neuroectoderm (NE) formation. Literature does not address whether ethanol interferes with these regulatory interactions during neural development.

View Article and Find Full Text PDF

Background: Acetaldehyde is produced during ethanol metabolism predominantly in the liver by alcohol dehydrogenase and rapidly eliminated by oxidation to acetate via aldehyde dehydrogenase. Assessment of circulating acetaldehyde levels in biological matrices is performed by headspace gas chromatography and reverse phase high-performance liquid chromatography (RP-HPLC).

Methods: We have developed an optimized method for the measurement of acetaldehyde by RP-HPLC in hepatoma cell culture medium, blood, and plasma.

View Article and Find Full Text PDF

Background: Fetal alcohol syndrome (FAS) reflects a constellation of congenital abnormalities caused by excess maternal consumption of alcohol. It is likely that interference with embryonic development plays a role in the pathogenesis of the disorder. Ethanol-induced apoptosis has been suggested as a causal factor in the genesis of FAS.

View Article and Find Full Text PDF

Background: Inherited human aldehyde dehydrogenase 2 (ALDH-2) deficiency reduces the risk for alcoholism. Kudzu plants and extracts have been used for 1,000 years in traditional Chinese medicine to treat alcoholism. Kudzu contains daidzin, which inhibits ALDH-2 and suppresses heavy drinking in rodents.

View Article and Find Full Text PDF

Gene therapy using viral vectors for liver diseases, particularly congenital disorders, is besought with difficulties, particularly immunologic reactions to viral antigens. As a result, nonviral methods for gene transfer in hepatocytes have also been explored. Gene repair by small synthetic single-stranded oligodeoxynucleotides (ODNs) produces targeted alterations in the genome of mammalian cells and represents a great potential for nonviral gene therapy.

View Article and Find Full Text PDF

Ethanol and ionizing radiation exposure are independently known to cause tissue damage through various mechanisms. The non-enzymatic and enzymatic metabolism of ethanol, the latter via the cytochrome P(450) 2E1-dependent pathway produces free radicals, which deplete cellular glutathione (GSH). Ionizing radiation exposure has been shown to induce lipid peroxidation, DNA damage, protein oxidation and GSH depletion.

View Article and Find Full Text PDF

Background: Ethanol administration decreases hepatic glutathione levels and increases urinary sulfhydryl excretion. Ethanol-induced liver injury is blunted by the administration of glutathione precursors. Acetaldehyde generated in the metabolism of ethanol binds to a number of amino acid residues in proteins and peptides, but it does not react readily with glutathione.

View Article and Find Full Text PDF
Proteomics in alcohol research.

Alcohol Res Health

September 2003

The proteome is the complete set of proteins in an organism. It is considerably larger and more complex than the genome--the collection of genes that encodes these proteins. Proteomics deals with the qualitative and quantitative study of the proteome under physiological and pathological conditions (e.

View Article and Find Full Text PDF