Publications by authors named "Helen Agasild"

Large and temperate Lake Peipsi is the fourth largest lake in Europe, where the massive cyanobacterial blooms are composed mostly of Microcystis spp., which have been common for several decades now. The seasonal dynamics of potentially toxic Microcystis were studied using microscopy and quantitative polymerase chain reaction (qPCR) by assessing the microcystin-encoding microcystin synthetase gene E (mcyE) abundances.

View Article and Find Full Text PDF

Aquatic macrophyte taxonomic composition, species abundance and cover determine the physical structure, complexity and heterogeneity of aquatic habitats - the structuring role of macrophytes. These traits influence richness, distribution, feeding and strength of the relationships between food web communities in lakes. The aim of this study was to determine how lakes with different dominating macrophyte ecological groups affect planktonic food web components, emphasising the influence on young of year (YOY) fish and large (≥1 +) fish community.

View Article and Find Full Text PDF

Photoautotrophic picoplankton (0.2-2 μm) can be a major contributor to primary production and play a significant part in the ecosystem carbon flow. However, the understanding about the dynamics of both eukaryotic and prokaryotic components of picoplankton in shallow eutrophic freshwater environments is still poor.

View Article and Find Full Text PDF

Untangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass).

View Article and Find Full Text PDF

The coexistence of potentially toxic bloom-forming cyanobacteria (CY) and generally smaller-sized grazer communities has raised the question of zooplankton (ZP) ability to control harmful cyanobacterial blooms and highlighted the need for species-specific research on ZP-CY trophic interactions in naturally occurring communities. A combination of HPLC, molecular and stable isotope analyses was used to assess in situ the importance of CY as a food source for dominant crustacean ZP species and to quantify the grazing on potentially toxic strains of Microcystis during bloom formation in large eutrophic Lake Peipsi (Estonia). Aphanizomenon, Dolichospermum, Gloeotrichia and Microcystis dominated bloom-forming CY, while Microcystis was the major genus producing cyanotoxins all over the lake.

View Article and Find Full Text PDF

We estimated the consumption of planktonic ciliates by fish larvae in the Väinameri Sea (a shallow semi-enclosed bay of the Baltic Sea) and Lake Võrtsjärv (a shallow and eutrophic lake). Our primary hypothesis was that planktonic ciliates constitute a substantial component of the diet of fish larvae in both environments. We also assumed that the contribution of ciliates to larval nutrition is bigger in lacustrine than in marine environment because ciliates are usually more abundant in lakes.

View Article and Find Full Text PDF

Small-bodied cladocerans and cyclopoid copepods are becoming increasingly dominant over large crustacean zooplankton in eutrophic waters where they often coexist with cyanobacterial blooms. However, relatively little is known about their algal diet preferences. We studied grazing selectivity of small crustaceans (the cyclopoid copepods Mesocyclops leuckarti, Thermocyclops oithonoides, Cyclops kolensis, and the cladocerans Daphnia cucullata, Chydorus sphaericus, Bosmina spp.

View Article and Find Full Text PDF

With increasing primary productivity, ciliates may become the most important members of the microbial loop and form a central linkage in the transformation of microbial production to upper trophic levels. How metazooplankters, especially copepods, regulate ciliate community structure in shallow eutrophic waters is not completely clear. We carried out mesocosm experiments with different cyclopoid copepod enrichments in a shallow eutrophic lake to examine the responses of ciliate community structure and abundance to changes in cyclopoid copepod biomass and to detect any cascading effects on bacterioplankton and edible phytoplankton.

View Article and Find Full Text PDF

The influence of functional group specific production and respiration patterns on a lake's metabolic balance remains poorly investigated to date compared to whole-system estimates of metabolism. We employed a summed component ecosystem approach for assessing lake-wide and functional group-specific metabolism (gross primary production (GPP) and respiration (R)) in shallow and eutrophic Lake Võrtsjärv in central Estonia during three years. Eleven functional groups were considered: piscivorous and benthivorous fish; phyto-, bacterio-, proto- and metazooplankton; benthic macroinvertebrates, bacteria and ciliates; macrophytes and their associated epiphytes.

View Article and Find Full Text PDF

The feeding impact of planktivorous fish on microbial organisms is still poorly understood. We followed the seasonal dynamics of the food web in two natural fishponds for two years: one was stocked with planktivorous whitefish while the other had no planktivorous fish. The aim of the study was the simultaneous assessment of the feeding behaviours of planktivorous fish and of bacterivorous meta-/protozooplankters.

View Article and Find Full Text PDF

Abundance and biomass of the microbial loop members [bacteria, heterotrophic nanoflagellates (HNF), and ciliates] were seasonally measured in the naturally eutrophic and shallow (2.8 mean depth) Lake Võrtsjärv, which has a large open surface area (average 270 km2) and highly turbid water (Secchi depth <1 m). Grazing rates (filter feeding rates) on 0.

View Article and Find Full Text PDF