Publications by authors named "Helen A Joly"

The major mononuclear aluminum species obtained in the reaction of aluminum atoms with dimethyl sulfide (DMS) and diethyl sulfide (DES), under cryogenic conditions, are the C-S insertion products, CHAlSCH and CHCHAlSCHCH, respectively, showing that aluminum atoms can activate C-S bonds. The magnetic parameters were extracted from the EPR spectrum. Support for the spectral assignment was obtained by repeating the experiments with C-labeled dimethyl sulfide yielding CHAlSCH.

View Article and Find Full Text PDF

The complex HAlOH:(H(2)O) has been detected by matrix-isolation IR spectroscopy. This complex was speculated to be the species responsible for the chemiluminescent glow associated with the explosion of trimethyl aluminum or aluminum grenades in the upper atomosphere. Theoretical studies suggest that HAlOH:(H(2)O)(n) is a critical precursor in the formation of H(2) in the reaction of Al with liquid water.

View Article and Find Full Text PDF

Reaction mixtures, containing Al atoms and methylethyl ether (MEE) or diethyl ether (DEE) in an adamantane matrix, were prepared with the aid of a metal-atom reactor known as a rotating cryostat. The EPR spectra of the resulting products were recorded from 77-260 K, at 10 K intervals. Al atoms were found to insert into methyl-O, ethyl-O, and C-C bonds to form CH(3)AlOCH(2)CH(3), CH(3)OAlCH(2)CH(3), and CH(3)OCH(2)AlCH(3), respectively, in the case of MEE while DEE produced CH(3)CH(2)AlOCH(2)CH(3) and CH(3)AlCH(2)OCH(2)CH(3), respectively.

View Article and Find Full Text PDF

The reaction of ground-state Al atoms with dichloromethane (CH(2)Cl(2)) in an adamantane matrix at 77 K yielded two mononuclear Al species. The magnetic parameters, extracted from the axial EPR spectrum of Species A/A' (g(1) = 2.0037, g(2) = g(3) = 2.

View Article and Find Full Text PDF

(69/71)Ga atoms were reacted with 1,2-epoxybutane and its isotopomers, 1,2-epoxybutane-1,1-d(2) (CH(3)CH(2)CHOCD(2)) and 1,2-epoxybutane-2-d(1) (CH(3)CH(2)CDOCH(2)), under matrix-isolation conditions. The novel gallaoxetanes CH(3)CH(2)CHCH(2)GaO and CH(3)CH(2)CHCH(2)OGa, resulting from the insertion of the metal atom in the C(1)-O and C(2)-O bonds, respectively, of the 1,2-epoxybutane, were detected by EPR spectroscopy. The Ga and H hyperfine interaction (hfi) values of the gallaoxetanes, calculated using a DFT method, were used to help assign the EPR spectra.

View Article and Find Full Text PDF

Group 13 metal atoms react with ethers under matrix isolation conditions to give a number of interesting products. This work has been extended to include the reaction of Al atoms with 1,2-epoxybutane (CH(3)CH(2)H(2)) and its isotopomers, 1,2-epoxybutane-1,1-d(2) (CH(3)CH(2)D(2)) and 1,2-epoxybutane-2-d(1) (CH(3)CH(2)H(2)). The paramagnetic species generated in the reaction have been studied by electron paramagnetic resonance (EPR) spectroscopy.

View Article and Find Full Text PDF