Publications by authors named "Helen A Goulart"

The present study reports a simple two-step method for the synthesis of arylselanyl hydrazide derivatives using hypophosphorous acid and polyethylene glycol (H PO /PEG-400) as an alternative reducing system and hydrazine hydrate (NH NH ⋅xH O/50-60 %). This single-vessel procedure was employed with methyl acrylate 2a and methyl bromoacetate 2b using diaryl diselenides to generate the nucleophile species to produce, respectively, 3-(arylselanyl)propane-hydrazides 4a-e and 2-(arylselanyl)acetohydrazides 5a-e with good yields by accelerating the reduction of -Se-Se- bond, when compared to available methods. The synthesized molecules are structurally similar to the isoniazid (INH).

View Article and Find Full Text PDF

We report herein an alternative method for the synthesis of seleno-dibenzocycloheptenones and seleno-spiro[5.5]trienones through the radical cyclization of biaryl ynones in the presence of diorganyl diselenides, using Oxone as a green oxidizing agent. The reactions were conducted using acetonitrile as the solvent in a sealed tube at 100 °C.

View Article and Find Full Text PDF

Oxone is a commercially available oxidant, composed of a mixture of three inorganic species, being the potassium peroxymonosulfate (KHSO) the reactive one. Over the past few decades, this cheap and environmentally friendly oxidant has become a powerful tool in organic synthesis, being extensively employed to mediate the construction of a plethora of important compounds. This review summarizes the recent advances in the Oxone-mediated synthesis of N-, O- and chalcogen-containing heterocyclic compounds, through a wide diversity of reactions, starting from several kinds of substrate, highlighting the main synthetic differences, advantages, the scope and limitations.

View Article and Find Full Text PDF

A new method was developed for the synthesis of 4-chalcogenyl-1-isochromen-1-ones through the 6-- electrophilic cyclization of 2-alkynylaryl esters and diorganyl dichalcogenides under ultrasound irradiation. The reactions were performed under mild conditions, using Oxone as a green oxidant to promote the cleavage of the chalcogen-chalcogen bond in diorganyl diselenides and ditellurides to generate electrophilic species . A total of 25 compounds were selectively obtained after 30-70 min, in good to excellent yields (74-95%).

View Article and Find Full Text PDF

We report a protocol for the synthesis of 3-organyl-4-(organylchalcogenyl)isoquinoline-2-oxides via electrophilic cyclization between alkynylbenzaldoximes and diorganyl dichalcogenides promoted by Oxone. A total of 21 3-organyl-4-(organylchalcogenyl)isoquinoline-2-oxides were selectively obtained in yields of up 93% under an ultrasound irradiation condition in short reaction times (10-70 min). Additionally, the synthetic usefulness of the 3-phenyl-4-(phenylselanyl)isoquinoline-2-oxide was demonstrated in the annulation reaction with 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one and in the deoxygenation reaction with phenylboronic acid.

View Article and Find Full Text PDF

In the present study, the synthesis of new selenoethers from nucleophilic substitution reaction between organyl halides and nucleophilic species of selenium generated in situ was demonstrated. After, this method was applied for the synthesis of pyridylselenides glycerol derivatives 9b and 9c and the antinociceptive and anti-inflammatory effects, as well as, acute toxicity were evaluated. In the formalin test, the compound 9b caused a reduction in licking time in both phases.

View Article and Find Full Text PDF