In this study we explore the potential of using Fourier-transform infrared (FTIR) spectra of trifluoroacetate-protein and peptide complexes for monitoring proteolytic reactions. The idea of treating dry-films of protein hydrolysates with trifluoroacetic acid (TFA) prior to FTIR analysis is based on the unique properties of TFA. By adding a large excess of TFA to protein hydrolysate samples, the possible protonation sites of the proteins and peptides will be saturated.
View Article and Find Full Text PDFFourier-transform infrared (FTIR) spectroscopy was applied to predict the degree of hydrolysis (DH%) and weight-average molecular weight (M) in milk protein hydrolysates. Both DH% and M are important quality parameters of protein hydrolysates. Measuring these parameters and following their development during proteolytic reactions is therefore essential for process control and optimization in industry.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor (PPAR)alpha regulates lipid metabolism at the transcriptional level and modulates the expression of genes involved in inflammation, cell proliferation, and differentiation. Although PPARalpha has been shown to mitigate cardiac hypertrophy, knowledge about underlying mechanisms and the nature of signaling pathways involved is fragmentary and incomplete. The aim of this study was to identify the processes and signaling pathways regulated by PPARalpha in hearts challenged by a chronic pressure overload by means of whole genome transcriptomic analysis.
View Article and Find Full Text PDFAccumulating evidence indicates an important role for inflammation in cardiac hypertrophy and failure. Peroxisome proliferator-activated receptors (PPARs) have been reported to attenuate inflammatory signaling pathways and, as such, may interfere with cardiac remodeling. Accordingly, the objectives of the present study were to explore the relationship between cardiomyocyte hypertrophy and inflammation and to investigate whether PPARalpha and PPARdelta are able to inhibit NF-kappaB activation and, consequently, the hypertrophic growth response of neonatal rat cardiomyocytes (NCM).
View Article and Find Full Text PDFBackground: The selective absorption of nutrients and other food constituents in the small intestine is mediated by a group of transport proteins and metabolic enzymes, often collectively called 'intestinal barrier proteins'. An important receptor that mediates the effects of dietary lipids on gene expression is the peroxisome proliferator-activated receptor alpha (PPARalpha), which is abundantly expressed in enterocytes. In this study we examined the effects of acute nutritional activation of PPARalpha on expression of genes encoding intestinal barrier proteins.
View Article and Find Full Text PDFTransporters present in the epithelium of the small intestine determine the efficiency by which dietary and biliary cholesterol are taken up into the body and thus control whole-body cholesterol balance. Niemann-Pick C1 Like Protein 1 (Npc1l1) transports cholesterol into the enterocyte, whereas ATP-binding cassette transporters Abca1 and Abcg5/Abcg8 are presumed to be involved in cholesterol efflux from the enterocyte toward plasma HDL and back into the intestinal lumen, respectively. Abca1, Abcg5, and Abcg8 are well-established liver X receptor (LXR) target genes.
View Article and Find Full Text PDF