In humans, neuroimaging studies have identified the planum temporale to be particularly responsive to both spatial and nonspatial attributes of sound. However, a functional segregation of the planum temporale along these acoustic dimensions has not been firmly established. We evaluated this scheme in a factorial design using modulated sounds that generated a percept of motion (spatial) or frequency modulation (nonspatial).
View Article and Find Full Text PDFHall et al. (Hall et al., 2002, Cerebral Cortex 12:140-149) recently showed that pulsed frequency-modulated tones generate considerably higher activation than their unmodulated counterparts in non-primary auditory regions immediately posterior and lateral to Heschl's gyrus (HG).
View Article and Find Full Text PDFfMRI (functional magnetic resonance imaging) was used to investigate whether the growth in activation of the human auditory cortex, with increasing sound level, is discernibly different for high- and low-frequency tones. Ten volunteers were scanned whilst listening to sequences of low-frequency (0.30-kHz) tones at sound levels between 42 and 96 dB sound pressure level (SPL), and 10 whilst listening to high-frequency (4.
View Article and Find Full Text PDFThe human auditory cortex comprises multiple areas, largely distributed across the supratemporal plane, but the precise number and configuration of auditory areas and their functional significance have not yet been clearly established. In this paper, we discuss recent research concerning architectonic and functional organisation within the human auditory cortex, as well as architectonic and neurophysiological studies in non-human species, which can provide a broad conceptual framework for interpreting functional specialisation in humans. We review the pattern in human auditory cortex of the functional responses to various acoustic cues, such as frequency, pitch, sound level, temporal variation, motion and spatial location, and we discuss their correspondence to what is known about the organisation of the auditory cortex in other primates.
View Article and Find Full Text PDFPrevious neuroimaging studies generally demonstrate a growth in the cortical response with an increase in sound level. However, the details of the shape and topographic location of such growth remain largely unknown. One limiting methodological factor has been the relatively sparse sampling of sound intensities.
View Article and Find Full Text PDF