Publications by authors named "Helder T Gomes"

Article Synopsis
  • Researchers developed single- and bimetallic carbon xerogels by adding iron and iron-cobalt precursors, testing them in catalytic wet peroxide oxidation (CWPO) to degrade ibuprofen in a simulated environment.
  • The bimetallic catalyst showed significantly better performance—25% higher than the single metal and 85% higher than non-metallic catalysts—after 360 minutes of reaction at a mild temperature of 30°C.
  • Further optimization for treating hospital wastewater indicated the bimetallic carbon xerogel could achieve up to 80% chemical oxygen demand (COD) removal and 55% total organic carbon (TOC) mineralization in continuous operation, suggesting its potential for efficient wastewater treatment beyond traditional batch methods
View Article and Find Full Text PDF

In the past decade, magnetic nanoparticles (MNPs) have been among the most attractive nanomaterials used in different fields, such as environmental and biomedical applications. The possibility of designing nanoparticles with different functionalities allows for advancing the biomedical applications of these materials. Additionally, the magnetic characteristics of the nanoparticles enable the use of magnetic fields to drive the nanoparticles to the desired sites of delivery.

View Article and Find Full Text PDF

Plastic derived carbon nanotubes (CNTs) were tested as catalysts in persulfate activation for the first time. Four catalysts were prepared by wetness impregnation and co-precipitation (using AlO, Ni, Fe and/or Al) and implemented to grow CNTs by chemical vapour deposition (CVD) using low-density polyethylene (LDPE) as carbon feedstock. A catalyst screening was performed in batch mode and the best performing CNTs (CNT@Ni+Fe/AlO-cp) led to a high venlafaxine mass removal rate (3.

View Article and Find Full Text PDF

Up to nine kinetic and fourteen isotherm adsorption models are employed to model the adsorption of Sudan IV, a lipophilic model pollutant present in a biphasic mixture of cyclohexane-water system to simulate oily wastewater. Six different modified activated carbons were used as adsorbents. The highest amount adsorbed of Sudan IV was found in the material prepared by successive treatments of the parent commercial activated carbon Norit ROX 0.

View Article and Find Full Text PDF

The degradation of methylparaben (MP) through 20 kHz ultrasound coupled with a bimetallic Co-Fe carbon xerogel (CX/CoFe) was investigated in this work. Experiments were performed at actual power densities of 25 and 52 W/L, catalyst loadings of 12.5 and 25 mg/L, MP concentrations between 1 and 4.

View Article and Find Full Text PDF

The synthesis of hydrophilic graphene-based yolk-shell magnetic nanoparticles functionalized with copolymer pluronic F-127 (GYSMNP@PF127) is herein reported to achieve an efficient multifunctional biomedical system for mild hyperthermia and stimuli-responsive drug delivery In vitro tests revealed the extraordinary ability of GYSMNP@PF127 to act as smart stimuli-responsive multifunctional nanomedicine platform for cancer therapy, exhibiting (i) an outstanding loading capacity of 91% (w/w, representing 910 μg mg) of the chemotherapeutic drug doxorubicin, (ii) a high heating efficiency under an alternating (AC) magnetic field (intrinsic power loss ranging from 2.1-2.7 nHm kg), and (iii) a dual pH and thermal stimuli-responsive drug controlled release (46% at acidic tumour pH vs 7% at physiological pH) under AC magnetic field, in just 30 min.

View Article and Find Full Text PDF

An advanced oxidation process comprising an iron-containing magnetic carbon xerogel (CX/Fe) and persulfate was tested for the degradation of propyl paraben (PP), a contaminant of emerging concern, in various water matrices. Moreover, the effect of 20 kHz ultrasound or light irradiation on process performance was evaluated. The pseudo-first order degradation rate of PP was found to increase with increasing SPS concentration (25-500 mg/L) and decreasing PP concentration (1690-420 μg/L) and solution pH (9-3).

View Article and Find Full Text PDF

An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a model endocrine-disrupting compound. The catalyst, consisting of interconnected carbon microspheres with embedded iron and cobalt microparticles, was capable of activating persulfate to form sulfate and hydroxyl radicals at ambient conditions. The pseudo-first order degradation rate of BPA in ultrapure water (UPW) was found to increase with (i) increasing catalyst (25-75 mg/L) and SPS (31-250 mg/L) concentrations, (ii) decreasing BPA concentration (285-14,200 μg/L), and (iii) changing pH from alkaline to acidic values (9-3).

View Article and Find Full Text PDF

A mesoporous carbon xerogel with a significant amount of oxygen functional groups and a commercial activated carbon, were tested in the catalytic wet air oxidation of aniline at 200 degrees C and 6.9 bar of oxygen partial pressure. Both carbon materials showed high activity in aniline and total organic carbon removal, a clear increase in the removal efficiency relatively to non-catalytic wet air oxidation being observed.

View Article and Find Full Text PDF