Publications by authors named "Helder Lima de Queiroz"

We describe the geographical variation in tree species composition across Amazonian forests and show how environmental conditions are associated with species turnover. Our analyses are based on 2023 forest inventory plots (1 ha) that provide abundance data for a total of 5188 tree species. Within-plot species composition reflected both local environmental conditions (especially soil nutrients and hydrology) and geographical regions.

View Article and Find Full Text PDF

Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests.

View Article and Find Full Text PDF

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge.

View Article and Find Full Text PDF

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness.

View Article and Find Full Text PDF

Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest.

View Article and Find Full Text PDF

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies.

View Article and Find Full Text PDF

Saimiri are neotropical primates with seasonal reproduction, males develop a seasonal fattening condition that has been suggested as a pre-copulatory sexual selection strategy. Furthermore, females mate with multiple males in the same season. This could also favor the evolution of a postcopulatory sexual strategy by sperm competition.

View Article and Find Full Text PDF

Globally, community-based initiatives are effective in protecting ecosystems and the species within them. In this paper, we analyze the emergence and large-scale expansion of a community-based environmental protection system (the Voluntary Environmental Agents Program - VEA Program) in the Brazilian Amazon and identify factors that have determined its success since its inception, 25 years ago. Collective actions to protect the environment in the region have been undertaken by local people for at least 40 years, before their legal regulation in 2001 by the federal government of Brazil, and by the Amazonas state in 2007.

View Article and Find Full Text PDF

Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity.

View Article and Find Full Text PDF

Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions.

View Article and Find Full Text PDF

Integration between ecology and biogeography provides insights into how niche specialization affects the geographical distribution of species. Given that rivers are not effective barriers to dispersal in three parapatric species of squirrel monkeys (Saimiri vanzolinii, S. cassiquiarensis and S.

View Article and Find Full Text PDF

1. River system dynamics results in ecological heterogeneities that play a central role in maintaining biodiversity in riverine regions. In central Amazonia, large expanses of forest are seasonally flooded by nutrient-rich water (várzea forests) or by nutrient-poor water (igapó forests).

View Article and Find Full Text PDF