Publications by authors named "Helder H A Medeiros"

This study was aimed at establishing the subcorticals substrates of the cognitive and visceromotor circuits of the A32 and A25 cortices of the medial prefrontal cortex and their projections and interactions with subcortical complexes in the common marmoset monkey (Callithrix jacchus). The study was primarily restricted to the nuclei of the diencephalon and amygdala. The common marmoset is a neotropical primate of the new world, and the absence of telencephalic gyrus favors the mapping of neuronal fibers.

View Article and Find Full Text PDF

A well-developed visual system can provide significant sensory information to guide motor behavior, especially in fruit-eating bats, which usually use echolocation to navigate at high speed through cluttered environments during foraging. Relatively few studies have been performed to elucidate the organization of the visual system in bats. The present work provides an extensive morphological description of the retinal projections in the subcortical visual nuclei in the flat-faced fruit-eating bat () using anterograde transport of the eye-injected cholera toxin B subunit (CTb), followed by morphometrical and stereological analyses.

View Article and Find Full Text PDF

In mammals, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian timing system. The SCN, classically known as the master circadian clock, generates rhythms and synchronizes them to environmental cues. The IGL is a key structure that modulates SCN activity.

View Article and Find Full Text PDF

The dopamine (DA) neurons of the retrorubral field (RRF - A8), the substantia nigra (SN - A9), and the ventral tegmental area (VTA - A10) have been implicated in motor regulation, reward, aversion, cognition, and several neuropsychiatric disorders. A series of studies have identified subdivisions of these cell groups in rodents, but these cell groups have not been well described in bats. An understanding of the motor system organization in bats would provide a context for comparing motor systems across rodent, primate, and bat phylogenies.

View Article and Find Full Text PDF