Natural products are important sources of biomolecules possessing antitumor activity and can be used as anticancer drug prototypes. The rich biodiversity of tropical and subtropical regions of the world provides considerable bioprospecting potential, including the potential of propolis produced by stingless bee species. Investigations of the potential of these products are extremely important, not only for providing a scientific basis for their use as adjuvants for existing drug therapies but also as a source of new and potent anticancer drugs.
View Article and Find Full Text PDFBackground: Antimicrobial peptides (AMPs) are molecules with potential application for the treatment of microorganism infections. We, herein, describe the structure, activity, and mechanism of action of RQ18, an α-helical AMP that displays antimicrobial activity against Gram-positive and Gram-negative bacteria, and yeasts from the Candida genus.
Methods: A physicochemical-guided design assisted by computer tools was used to obtain our lead peptide candidate, named RQ18.
Polyphenols have demonstrated several potential biological activities, notably antitumoral activity dependent on immune function. In the present review, we describe studies that investigated antitumor immune responses influenced by polyphenols and the mechanisms by which polyphenols improve the immune response. We also discuss the limitations in related areas, especially unexplored areas of research, and next steps required to develop a therapeutic approach utilizing polyphenols in oncology.
View Article and Find Full Text PDFyeast infections are the fourth leading cause of death worldwide. Peptides with antimicrobial activity are a promising alternative treatment for such infections. Here, the antifungal activity of a new antimicrobial peptide-PEP-IA18-was evaluated against species.
View Article and Find Full Text PDFStingless bees produce geopropolis, which is popularly described for its medicinal properties, but for which few scientific studies have demonstrated pharmacological effects. The objective of this study was to investigate the chemical composition of the geopropolis of and to evaluate its antioxidant, antimutagenic, anti-inflammatory, and antimicrobial activities. The composition of the hydroethanolic extract of geopropolis (HEG) included di- and trigalloyl and phenylpropanyl heteroside derivatives, flavanones, diterpenes, and triterpenes.
View Article and Find Full Text PDF