Purpose: NAFLD is a hepatic component of type 2 diabetes mellitus (T2D), in which impaired hepatic glucose production plays an important role. Inhibitors of sodium glucose transporter 2 (SGLT2) reduce glycemia and exert beneficial effects on diabetic complications. Recently, dual SGLT1/2 inhibition has been proposed to be more effective in reducing glycemia.
View Article and Find Full Text PDFEstrogens are involved in glycemic regulation, playing an important role in the development and/or progression of insulin resistance. For that, estrogens regulate the expression of the glucose transporter protein GLUT4 (codified by the solute carrier family 2 member 4 gene, ), thus modulating adipose and muscle glucose disposal. This regulation is a balance between ESR1-mediated enhancer effect and ESR2-mediated repressor effect on gene.
View Article and Find Full Text PDFInsulin resistance participates in the glycaemic control disruption in type 2 diabetes mellitus (T2DM), by reducing muscle glucose influx and increasing liver glucose efflux. GLUT4 ( gene) and GLUT2 ( gene) proteins play a fundamental role in the muscle and liver glucose fluxes, respectively. Resveratrol is a polyphenol suggested to have an insulin sensitizer effect; however, this effect, and related mechanisms, have not been clearly demonstrated in T2DM.
View Article and Find Full Text PDFBackground: Resveratrol is a natural polyphenol that has been proposed to improve glycemic control in diabetes, by mechanisms that involve improvement in insulin secretion and activity. In type 1 diabetes (T1D), in which insulin therapy is obligatory, resveratrol treatment has never been investigated. The present study aimed to evaluate resveratrol as an adjunctive agent to insulin therapy in a T1D-like experimental model.
View Article and Find Full Text PDFContext: Mutations in the GH1 promoter are a rare cause of isolated growth hormone deficiency (IGHD).
Objective: To identify the molecular aetiology of a family with IGHD.
Design: DNA sequencing, electromobility shift (EMSA) and luciferase reporter assays.
Background: Oral health complications in diabetes and hypertension include decreased salivary secretion. The sodium-glucose cotransporter 1 (SGLT1) protein, which transports 1 glucose/2 Na+/264 H2O molecules, is described in salivary glands. We hypothesized that changes in SGLT1 expression in the luminal membrane of ductal cell may be related to an altered salivary flow.
View Article and Find Full Text PDFAims: Solute carrier 2a2 (Slc2a2) gene codifies the glucose transporter GLUT2, a key protein for glucose flux in hepatocytes and renal epithelial cells of proximal tubule. In diabetes mellitus, hepatic and tubular glucose output has been related to Slc2a2/GLUT2 overexpression; and controlling the expression of this gene may be an important adjuvant way to improve glycemic homeostasis. Thus, the present study investigated transcriptional mechanisms involved in the diabetes-induced overexpression of the Slc2a2 gene.
View Article and Find Full Text PDFJ Endocrinol
October 2011
Insulin replacement is the only effective therapy to manage hyperglycemia in type 1 diabetes mellitus (T1DM). Nevertheless, intensive insulin therapy has inadvertently led to insulin resistance. This study investigates mechanisms involved in the insulin resistance induced by hyperinsulinization.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2010
Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored.
View Article and Find Full Text PDFGlucose transporter 4 (GLUT4) expression in adipose tissue decreases during fasting. In skeletal muscle, we hypothesized that GLUT4 expression might be maintained in a beta-adrenergic-dependent way to ensure energy disposal for contractile function. Herein we investigate beta-blockade or beta-stimulation effects on GLUT4 expression in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscles of fasted rats.
View Article and Find Full Text PDFYerba maté (Ilex paraguariensis) is rich in polyphenols, especially chlorogenic acids. Evidence suggests that dietary polyphenols could play a role in glucose absorption and metabolism. The aim of this study was to evaluate the antidiabetic properties of yerba maté extract in alloxan-induced diabetic Wistar rats.
View Article and Find Full Text PDFBackground/aims: Increases in the renal glucose transporter gene expression are involved in renal tubule-glomerular diseases. Here we investigate the GLUT2 gene expression changes in the kidney of diabetic rats, by using insulin or phlorizin treatment.
Methods: Rats were rendered diabetic and studied 20 days later: 4-12 h after one single injection of insulin or phlorizin, and 1-6 days after insulin or phlorizin injection twice a day, comparing with diabetic rats injected with placebo.
Increased GLUT2 gene expression in the renal proximal tubule of diabetic rats is an adaptive condition, which may be important in the diabetic nephropathy development. We investigated the effects of insulin treatment upon the renal GLUT2 overexpression of diabetic rats. Acute treatment, surprisingly, induced a rapid further increase in GLUT2 mRNA content.
View Article and Find Full Text PDF