A novel strategy adaptive to 3D printing of stereo-complexed polylactide matrix for simultaneous toughness and stiffness was designed. Stereo-complexation is a potent way to enhance both aqueous stability and heat resistance of polylactide, but also aggravates brittleness problem of polylactide. Though poly(butyleneadipate-co-terephthalate) elastomer with epoxidized compatibilizer improved stiffness and toughness of common polylactide, their effectiveness on mechanical and crystallization properties of stereo-complexed polylactide remained unknown.
View Article and Find Full Text PDFA novel strategy adaptive to 3D printing of PLA matrix for complete stereo-complexation was designed. Stereo-complexation has been demonstrated for its effectiveness in simultaneously improving aqueous stability and heat resistance of PLA. However, current techniques could not be directly incorporated into 3D printing of stereo-complexed PLA since stereo-complexed crystallites are easily formed before printing.
View Article and Find Full Text PDFCorrection for 'Potent and regularizable crosslinking of ultrafine fibrous protein scaffolds for tissue engineering using a cytocompatible disaccharide derivative' by Helan Xu et al., J. Mater.
View Article and Find Full Text PDFTechnology for the transformation of waste feathers to quality regenerated filaments has been developed. Regardless of superior properties of natural keratin materials, previously developed regenerated materials from keratin had tensile properties much lower than their natural counterparts due to backbone hydrolysis and inefficient reconstruction of disulfide crosslinkages. In this work, tough keratin filaments have been regenerated from white duck feathers via efficient restoration of disulfide crosslinkages using a dithiol reducing agent.
View Article and Find Full Text PDFNatural extracts gallnut tannins (GTs) were used as functional components to prepare chitosan/gallnut tannins (CS/GTs) composite fiber by blended solution spinning. Chitosan fiber has great potential to be used as absorbent suture and dressing due to its good biocompatibility. However, the weak mechanical properties limited its application.
View Article and Find Full Text PDFOligosaccharide derivatives were developed to crosslink keratin materials from poultry feathers, swine bristles and ox hairs to valorize these major wastes from meat industry. Global butchery generates more than 8,600,000 tons of keratinous wastes annually. Keratin was considered a promising resource for developing bio-based products as alternatives to petroleum products.
View Article and Find Full Text PDFPLA bio-composites reinforced by oligo(d-lactic acid) grafted chitosan has been developed for simultaneously improved ductility, strength and modulus. Brittleness problem greatly limits the applications of PLA, a polymer derived from corn. Various methods have been developed to solve the brittleness problem.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
May 2019
Keratin films with wet stability and strength suitable for biomedical applications were developed via reinforcement with submicron cysteine particles for improved interfaces. Keratin products regenerated from wool or human hair were widely investigated as wound dressing and tissue engineering scaffolds for their satisfactory biomedical properties. However, regenerated keratin scaffolds usually did not have good mechanical properties, and also could not stand humid or wet biological environment due to poor moisture stability.
View Article and Find Full Text PDFThis paper investigates the accelerated acidic hydrolysis of cellulose by its substituents for potential biomass conversion. Insufficient pretreatments and slow cellulose hydrolysis are major obstacles that impede efficient hydrolysis of cellulose. Substituted cellulose, such as dyed cotton, has large availability.
View Article and Find Full Text PDFA two-step technology using nontoxic and eco-friendly chemicals is developed for the durable setting of densely/highly crosslinked proteins, such as wool and hair. Currently, most technologies for morphological modification are effective only for materials from non-highly-crosslinked proteins and cellulose. Before their morphological change, only water is needed to interrupt hydrogen bonds and ionic linkages, which stabilize the relative positions of molecules in non-highly-crosslinked proteins and cellulose.
View Article and Find Full Text PDFHigh-efficiency and recyclable three-dimensional bioadsorbents were prepared by incorporating cellulose nanocrystal (CNC) as reinforcements in keratin sponge matrix to remove dyes from aqueous solution. Adsorption performance of dyes by CNC-reinforced keratin bioadsorbent was improved significantly as a result of adding CNC as filler. Batch adsorption results showed that the adsorption capacities for Reactive Black 5 and Direct Red 80 by the bioadsorbent were 1201 and 1070mgg, respectively.
View Article and Find Full Text PDFFully biodegradable textile sizes with satisfactory performance properties were developed from soy protein with controlled hydrolysis and dis-entanglement to tackle the intractable environmental issues associated with the non-biodegradable polyvinyl alcohol (PVA) in textile effluents. PVA derived from petroleum is the primary sizing agent due to its excellent sizing performance on polyester-containing yarns, especially in increasingly prevailing high-speed weaving. However, due to the poor biodegradability, PVA causes serious environmental pollution, and thus, should be substituted with more environmentally friendly polymers.
View Article and Find Full Text PDFBioresour Technol
November 2015
In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose.
View Article and Find Full Text PDFSucrose, a naturally-occurring disaccharide, could be oxidized to polar polyaldehydes to improve the performance properties of tissue engineering scaffolds composed of three-dimensionally arranged ultrafine protein fibers in a controllable manner. With significantly better water stability, an in vitro study demonstrated that the biocompatibility of the oxidized sucrose crosslinked scaffolds was similar to the citric acid crosslinked ones. Due to their structural similarity to the major component in native extracellular matrices (ECMs), proteins had advantages over other macromolecules for development of tissue engineering scaffolds.
View Article and Find Full Text PDFCellulosic fibers with high aspect ratio have been firstly obtained from cornhusks via controlled swelling in organic solvent and simultaneous tetramethylammonium hydroxide (TMAOH) post treatment within restricted depth. Cornhusks, with around 42% cellulose content, are a copious and inexpensive source for natural fibers. However, cornhusk fibers at 20tex obtained via small-molecule alkaline extraction were too coarse for textile applications.
View Article and Find Full Text PDFBiodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far.
View Article and Find Full Text PDFBiomed Microdevices
February 2015
In this research, controlled delivery of hollow nanoparticles from zein, the corn storage protein, to different organs of mice was achieved via crosslinking using citric acid, a non-toxic polycarboxylic acid derived from starch. Besides, crosslinking significantly enhanced water stability of nanoparticles while preserving their drug loading efficiency. Protein nanoparticles have been widely investigated as vehicles for delivery of therapeutics.
View Article and Find Full Text PDFJ Agric Food Chem
September 2014
Highly water-stable nanoparticles of around 70 nm and capable of distributing with high uptake in certain organs of mice were developed from feather keratin. Nanoparticles could provide novel veterinary diagnostics and therapeutics to boost efficiency in identification and treatment of livestock diseases to improve protein supply and ensure safety and quality of food. Nanoparticles could penetrate easily into cells and small capillaries, surpass detection of the immune system, and reach targeted organs because of their nanoscale sizes.
View Article and Find Full Text PDFJ Biomed Mater Res A
May 2015
Wheat glutenin nanoparticles intended for targeted drug delivery were biocompatible and were detected in the kidney, liver, and spleen in mice. Protein-based nanoparticles are preferred for therapeutic drug and gene delivery owing to their biocompatibility and ability to load various types of drugs. However, proteins such as a collagen and albumin are unstable in aqueous environments and are not ideal for drug delivery applications.
View Article and Find Full Text PDFIntrinsically water-stable scaffolds composed of ultrafine keratin fibers oriented randomly and evenly in three dimensions were electrospun for cartilage tissue engineering. Keratin has been recognized as a biomaterial that could substantially support the growth and development of multiple cell lines. Besides, three-dimensional (3D) ultrafine fibrous structures were preferred in tissue engineering due to their structural similarity to native extracellular matrices in soft tissues.
View Article and Find Full Text PDFWheat glutenin, the highly crosslinked protein from wheat, was electrospun into scaffolds with ultrafine fibers oriented randomly and evenly in three dimensions to simulate native extracellular matrices of soft tissues. The scaffolds were intrinsically water-stable without using any external crosslinkers and could support proliferation and differentiation of adipose-derived mesenchymal stem cells for soft tissue engineering. Regeneration of soft tissue favored water-stable fibrous protein scaffolds with three-dimensional arrangement and large volumes, which could be difficult to obtain via electrospinning.
View Article and Find Full Text PDFIn this research, ultrafine fibrous scaffolds with deep cell infiltration and sufficient water stability have been developed from gelatin, aiming to mimic the extracellular matrices (ECMs) as three dimensional (3D) stromas for soft tissue repair. The ultrafine fibrous scaffolds produced from the current technologies of electrospinning and phase separation are either lack of 3D oriented fibrous structure or too compact to be penetrated by cells. Whilst electrospun scaffolds are able to emulate two dimensional (2D) ECMs, they cannot mimic the 3D ECM stroma.
View Article and Find Full Text PDFDistillers Dried Grains (DDG) obtained during production of ethanol from grain sorghum were grafted with methacrylates and compression molded into films with good dry and wet tensile properties. Since sorghum DDG contains up to 45% proteins that are indigestible by animals, it is necessary to find alternative applications to make sorghum ethanol economically competitive. In this research, sorghum DDG was grafted with methyl, ethyl, and butyl methacrylates, the grafted DDG was compression molded into films, and the properties of the grafted DDG and films were studied.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2014
In this research, films with compressive strength and aqueous stability were developed from camelina protein (CP) for tissue engineering. Protein based scaffolds have poor mechanical properties and aqueous stability and generally require chemical or physical modifications to make them applicable for medical applications. However, these modifications such as crosslinking could reduce biocompatibility and/or degradability of the scaffolds.
View Article and Find Full Text PDF