We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a ^{199}Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes.
View Article and Find Full Text PDFWe have cloned, overexpressed, purified, and characterized a 2-ketogluconate kinase (2-dehydrogluconokinase, EC 2.7.1.
View Article and Find Full Text PDFWe explored a collection of 2-deoxyribose-5-phosphate aldolases (DERAs) from biodiversity for their nucleophile substrate promiscuity. The DERAs were screened using as nucleophiles propanone, propanal, cyclobutanone, cyclopentanone, dihydroxyacetone, and glycolaldehyde with l-glyceraldehyde-3-phosphate as an electrophile in aldol addition. A DERA from Arthrobacter chlorophenolicus (DERA) efficiently allowed the synthesis of the corresponding aldol adducts in good yields, displaying complementarity in terms of configuration and substrate specificity with fructose-6-phosphate aldolase, the only previously known aldolase with a large nucleophile tolerance.
View Article and Find Full Text PDFThe reactor antineutrino anomaly might be explained by the oscillation of reactor antineutrinos toward a sterile neutrino of eV mass. In order to explore this hypothesis, the STEREO experiment measures the antineutrino energy spectrum in six different detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this Letter, results from 66 days of reactor turned on and 138 days of reactor turned off are reported.
View Article and Find Full Text PDFAsymmetric aldol addition of simple aldehydes and ketones to electrophiles is a cornerstone reaction for the synthesis of unusual sugars and chiral building blocks. We investigated d-fructose-6-phosphate aldolase from (FSA) D6X variants as catalysts for the aldol additions of ethanal and nonfunctionalized linear and cyclic aliphatic ketones as nucleophiles to nonphosphorylated hydroxyaldehydes. Thus, addition of propanone, cyclobutanone, cyclopentanone, or ethanal to 3-hydroxypropanal or ()- or ()-3-hydroxybutanal catalyzed by FSA D6H and D6Q variants furnished rare deoxysugars in 8-77% isolated yields with high stereoselectivity (97:3 dr and >95% ).
View Article and Find Full Text PDFDihydroxyacetone phosphate (DHAP)-dependent rhamnulose aldolases display an unprecedented versatility for ketones as electrophile substrates. We selected and characterized a rhamnulose aldolase from Bacteroides thetaiotaomicron (RhuABthet) to provide a proof of concept. DHAP was added as a nucleophile to several α-hydroxylated ketones used as electrophiles.
View Article and Find Full Text PDFEfficient bi-enzymatic cascades combining aldolases and α-transaminases were designed for the synthesis of γ-hydroxy-α-amino acids. These recycling cascades provide high stereoselectivity, atom economy, and an equilibrium shift of the transamination. l-syn or anti-4-hydroxyglutamic acid and d-anti-4,5-dihydroxynorvaline were thus prepared in 83-95% yield in one step from simple substrates.
View Article and Find Full Text PDFd-Fructose-6-phosphate aldolase (FSA) was probed for extended nucleophile promiscuity by using a series of fluorogenic substrates to reveal retro-aldol activity. Four nucleophiles ethanal, propanone, butanone, and cyclopentanone were subsequently confirmed to be non-natural substrates in the synthesis direction using the wild-type enzyme and its D6H variant. This exceptional widening of the nucleophile substrate scope offers a rapid entry, in good yields and high stereoselectivity, to less oxygenated alkyl ketones and aldehydes, which was hitherto impossible.
View Article and Find Full Text PDFWe propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A.
View Article and Find Full Text PDFWe describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1 μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.
View Article and Find Full Text PDFWe present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 μT magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times ranging from 80 ms to 1000 s.
View Article and Find Full Text PDFBiosens Bioelectron
December 2014
This paper describes an innovative amperometric biosensor for the in vitro determination of activity of transketolase from Escherichia coli (TKec) using commercially available TK substrates, namely d-fructose-6-phosphate a physiological donor and glycolaldehyde the best non-phosphorylated acceptor. A galactose oxidase (GAOx) biosensor, based on the immobilization of this enzyme within laponite clay, allows amperometric detection of L-erythrulose released upon TK-catalyzed reaction. A calibration curve has been established from 0.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2013
A pH-based high-throughput assay method has been developed for the rapid and reliable measurement of transketolase (TK) activity. The method is based on the decarboxylation of lithium hydroxypyruvate (HPA) as a hydroxyacetyl donor with an aldehyde acceptor, using phenol red as the pH indicator. Upon release of carbon dioxide from HPA, the pH increase in the reaction mixture can be determined photometrically by the color change of the pH indicator.
View Article and Find Full Text PDFThis paper proposes a new concept of transketolase (TK) activity profiling. A tyrosinase (PPO) biosensor, based on the immobilization of this enzyme in a Mg(2)Al-Cl layered double hydroxide, was developed for the amperometric detection of N-acetyl-l-tyrosine ethyl ester monohydrate (N-Ac-Tyr-OEt) at -0.2V.
View Article and Find Full Text PDF5-O-Coumarinyl-d-xylulose was studied as a fluorogenic substrate for the stereospecific assay of transketolase enzyme. Enzymatic C2-C3 cleavage released an alpha-hydroxyl, beta-coumarinyl substituted aldehyde. Although the subsequent beta-elimination step was rate limiting under chemical or enzymatic catalysis, we detected a TK activity as low as 0.
View Article and Find Full Text PDFSubtype-selective ligands are of great interest to the scientific community, as they provide a tool for investigating the function of one receptor or transporter subtype when functioning in its native environment. Several 4-substituted (S)-glutamate (Glu) analogues were synthesized, and altogether this approach has provided important insight into the structure-activity relationships (SAR) for ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs), as well as the excitatory amino acid transporters (EAATs). In this work, three 4,4-disubstituted Glu analogues 1-3, which are hybrid structures of important 4-substituted Glu analogues 4-8, were investigated at iGluRs and EAATs.
View Article and Find Full Text PDFProbes were developed for the in vivo detection of transketolase activity by the use of a complementation assay in Escherichia coli auxotrophs They combine the d-threo ketose moiety recognised by transketolase and the side chain of leucine or methionine. These compounds were donor substrates of yeast transketolase leading to the release of the corresponding alpha-hydroxyaldehydes which could be converted in E. coli by a cascade of reactions into leucine or methionine required for cellular growth.
View Article and Find Full Text PDFTransaldolase catalyzes the transfer of dihydroxyacetone from, for example, fructose 6-phosphate to erythrose 4-phosphate. As a potential probe for assaying fluorescent transaldolase, 6-O-coumarinyl-fructose (1) was prepared in six steps from D-fructose. The corresponding 6-O-coumarinyl-5-deoxy derivative 2 was prepared stereoselectively from acrolein and tert-butyl acetate by a chemoenzymatic route involving Amano PS lipase for the kinetic resolution of tert-butyl 3-hydroxypent-4-enoate (7) and E.
View Article and Find Full Text PDFCurr Opin Biotechnol
December 2001
Synthetic building blocks bearing hydroxylated chiral centers are important targets for biocatalysis. Many C-C bond forming enzymes have recently been investigated for new applications and new strategies towards the synthesis of natural products and related oxygenated compounds. Several old catalysts have been studied to increase our functional knowledge of natural aldolase-type enzymes, and new mutated catalysts or catalytic antibodies have been tested for their synthetic utility.
View Article and Find Full Text PDF