In recent years, topological semimetals/metals, including nodal point, nodal line, and nodal surface semimetals/metals, have been studied extensively because of their potential applications in spintronics and quantum computers. In this study, we predict a family of materials, ZrX (X = Al, Ga, In), hosting the nodal loop and nodal surface states in the absence of spin-orbit coupling. Remarkably, the energy variation of the nodal loop and nodal surface states in ZrX are very small, and these topological signatures lie very close to the Fermi level.
View Article and Find Full Text PDFRealizing rich topological elements in topological materials has attracted increasing attention in the fields of chemistry, physics, and materials science. Topological semimetals/metals are classified into three main types: nodal-point, nodal-line, and nodal-surface types with zero-, one-, and two-dimensional topological elements, respectively. This study reports that XPt (X = Sc, Y, La) intermetallic compounds are topological metals with opened and closed nodal lines, and triply degenerate nodal points (TNPs) when the spin-orbit coupling (SOC) is ignored.
View Article and Find Full Text PDFA suitable annealing temperature was found by adopting the sol-gel method to prepare silicon-based molybdenum sulfide film heterojunction solar cells. As shown by the results, a change in the efficiency of the solar cells, which was attributed to the fact that as the annealing temperature rises, the degree of crystallization of the film increases continuously, the degree of order of the crystal particles goes up first and then goes down, and the temperature change affects the proportion of Mo in different valence states. By comparison, it was found that when the temperature reached 500 °C, the degree of order of the film was raised and the film was in the initial zone from the amorphous to the microcrystal phase change and the proportion of Mo 6+ was relatively large, increasing the conversion efficiency of the device power to 7.
View Article and Find Full Text PDFSpin-gapless semiconductors (SGSs) with Dirac-like band crossings may exhibit massless fermions and dissipationless transport properties. In this study, by applying the density functional theory, novel multiple linear-type spin-gapless semiconducting band structures were found in a synthesized R 3 - c -type bulk PdF compound, which has potential applications in ultra-fast and ultra-low power spintronic devices. The effects of spin-orbit coupling and on-site Coulomb interaction were determined for the bulk material in this study.
View Article and Find Full Text PDF