Despite the importance of surface iron (hydr)oxides (Fe-(hydr)oxides) for the decontamination performance of zerovalent iron (ZVI) -based technologies has been well recognized, controversial understandings of their exact roles still exist due to the complex species distribution of Fe-(hydr)oxides. Herein, we re-structured the surface of ZVI using eight distinct Fe-(hydr)oxides and analyzed their species-specific effects on the performance of ZVI for Se(IV) under well-controlled conditions. The kinetics-relevant performance indicators (Se(IV) removal rates, Fe release rates, and the utilization ratio of ZVI) under the effect of each Fe-(hydr)oxide roughly followed the order: δ-FeOOH > FeHO·4HO > α-FeOOH > β-FeOOH > γ-FeOOH > γ-FeO > FeO > α-FeO.
View Article and Find Full Text PDFContrasting effects of sulfidation on contaminants reduction by zero-valent iron (ZVI) has been reported in literature but the underlying mechanisms remain unclear. Here, under well-controlled conditions, we compared the performance of ZVI and sulfidated ZVI (S-ZVI) toward a series of chlorinated compounds. Results revealed that, although S-ZVI was more reactive than ZVI toward hexachloroethane, pentachloroethane, tetrachloroethylene, and trichloroethene, sulfidation hindered the dechlorination of the other ten tested chlorinated aliphatics by a factor of 1.
View Article and Find Full Text PDFWater Environ Res
November 2021
Since the observation that carbon materials can facilitate electron transfer between reactants, there is growing literature on the abiotic reductive removal of organic contaminants catalyzed by them. Most of the interest in these processes arises from the participation of carbon materials in the natural transformation of contaminants and the possibility of developing new strategies for environmental treatment and remediation. The combinations of various carbon materials and reductants have been investigated for the reduction of nitro-organic compounds, halogenated organics, and azo dyes.
View Article and Find Full Text PDFGiven that there are still some debates on the influence of carbon modification on zerovalent iron (ZVI) decontamination process, the roles of carbon on trichloroethylene (TCE) reduction by ZVI were re-investigated in this work. Compared to activated carbons (AC) with high adsorption ability, carbon fibers (CF) with good electronic conductivity performed much better in enhancing ZVI performance in terms of both reactivity and selectivity. Moreover, it was interesting to observe that a low carbon loading is sufficient to effectively improve TCE reduction and this promoting effect would decline with further increasing the carbon amounts from 1.
View Article and Find Full Text PDFIn this study, Fe addition was employed to overcome the negative effects of humic acid (HA) on contaminant removal by zerovalent iron (ZVI), and its feasibility to improve electron efficiency of ZVI was also tested. HA at high concentrations suppressed the removal of 4-nitrophenol (4-NP) by ZVI, while the addition of 0.25-1.
View Article and Find Full Text PDFEnviron Sci Technol
August 2019
Competition among oxidizing species in groundwater and wastewater for the reductive capacity of zerovalent iron (ZVI) makes the selectivity of ZVI for target contaminant degradation over other reduction pathways a major determinant of the feasibility of ZVI-based water treatment processes. The selectivity for reduction of contaminants over water is improved by sulfidation, but the effect of sulfidation on other competing reactions is not known. The interaction between these competing reactions was investigated using -nitrosodimethylamine (NDMA) as the target contaminant, nitrate as a co-contaminant, and micrometer-sized ZVI with and without sulfidation.
View Article and Find Full Text PDFThe hydrogen evolution reaction (HER) that generates H from the reduction of HO by Fe is among the most fundamental of the processes that control reactivity in environmental systems containing zerovalent iron (ZVI). To develop a comprehensive kinetic model for this process, a large and high-resolution data set for HER was measured using five types of ZVI pretreated by acid-washing and/or sulfidation (in pH 7 HEPES buffer). The data were fit to four alternative kinetic models using nonlinear regression analysis applied to the whole data set simultaneously, which allowed some model parameters to be treated globally across multiple experiments.
View Article and Find Full Text PDFAppropriately selecting methods for characterizing the reaction system of zerovalent iron (ZVI) favors its application for water treatment and remediation. Hence, a survey of the available ZVI characterization techniques used in laboratory and field studies are presented in this review for clarifying the characteristic properties, (in-situ) corrosion processes, and corrosion products of ZVI system. The methods are generally classified into four broad categories: morphology characterization techniques, (sub-)surface and bulk analysis mainly via the spectral protocols, along with the (physio)electrochemical alternatives.
View Article and Find Full Text PDFAlthough the electron selectivity (ES) of zerovalent iron (ZVI) for target contaminant and its utilization ratio (UR) decide the removal capacity of ZVI, little effort has been made to improve them. Taking selenate [Se(VI)] as a target contaminant, this study investigated the coupled influence of aeration gas and Fe(II) on the ES and UR of ZVI. Oxygen was necessary for effective removal of Se(VI) by ZVI without Fe(II) addition.
View Article and Find Full Text PDFIn this study, the effects of major anions (e.g., ClO, NO, Cl, and SO) in water on the reactivity of zerovalent iron (ZVI) toward As(III) sequestration were evaluated with and without a weak magnetic field (WMF).
View Article and Find Full Text PDFEnviron Sci Technol
December 2015
Premagnetization was applied to enhance the removal of various oxidative contaminants (including amaranth (AR27), lead ion (Pb(2+)), cupric ion (Cu(2+)), selenite (Se(4+)), silver ion (Ag(+)), and chromate (Cr(6+))) by zerovalent iron (ZVI) from different origins under well-controlled experimental conditions. The rate constants of contaminants by premagnetized ZVI (Mag-ZVI) samples were 1.2-12.
View Article and Find Full Text PDFJ Environ Sci (China)
May 2015
Weak magnetic field (WMF) was employed to improve the removal of Cr(VI) by zero-valent iron (ZVI) for the first time. The removal rate of Cr(VI) was elevated by a factor of 1.12-5.
View Article and Find Full Text PDFOver the past 20 years, zero-valent iron (ZVI) has been extensively applied for the remediation/treatment of groundwater and wastewater contaminated with various organic and inorganic pollutants. Based on the intrinsic properties of ZVI and the reactions that occur in the process of contaminants sequestration by ZVI, this review summarizes the limitations of ZVI technology and the countermeasures developed in the past two decades (1994-2014). The major limitations of ZVI include low reactivity due to its intrinsic passive layer, narrow working pH, reactivity loss with time due to the precipitation of metal hydroxides and metal carbonates, low selectivity for the target contaminant especially under oxic conditions, limited efficacy for treatment of some refractory contaminants and passivity of ZVI arising from certain contaminants.
View Article and Find Full Text PDF