Publications by authors named "Hejie Cui"

The growing availability of well-organized Electronic Health Records (EHR) data has enabled the development of various machine learning models towards disease risk prediction. However, existing risk prediction methods overlook the heterogeneity of complex diseases, failing to model the potential disease subtypes regarding their corresponding patient visits and clinical concept subgroups. In this work, we introduce , a novel framework that jointly discovers clusters of clinical concepts and patient visits based on a hypergraph modeling of EHR data.

View Article and Find Full Text PDF

Recent advancements in multimodal foundation models have showcased impressive capabilities in understanding and reasoning with visual and textual information. Adapting these foundation models trained for general usage to specialized domains like biomedicine requires large-scale domain-specific instruction datasets. While existing works have explored curating such datasets automatically, the resultant datasets are not explicitly aligned with domain expertise.

View Article and Find Full Text PDF
Article Synopsis
  • Images can provide important information to help computers understand things better.
  • Current methods for getting this information are limited because they use specific formats or types of relationships.
  • OpenVik is a new tool that finds and generates useful information from images without strict formats, making it more flexible and improving how computers can use visual information.
View Article and Find Full Text PDF

Biological networks are commonly used in biomedical and healthcare domains to effectively model the structure of complex biological systems with interactions linking biological entities. However, due to their characteristics of high dimensionality and low sample size, directly applying deep learning models on biological networks usually faces severe overfitting. In this work, we propose R-Mixup, a Mixup-based data augmentation technique that suits the symmetric positive definite (SPD) property of adjacency matrices from biological networks with optimized training efficiency.

View Article and Find Full Text PDF

Training deep neural networks (DNNs) with limited supervision has been a popular research topic as it can significantly alleviate the annotation burden. Self-training has been successfully applied in semi-supervised learning tasks, but one drawback of self-training is that it is vulnerable to the label noise from incorrect pseudo labels. Inspired by the fact that samples with similar labels tend to share similar representations, we develop a neighborhood-based sample selection approach to tackle the issue of noisy pseudo labels.

View Article and Find Full Text PDF

Recent advancements in neuroimaging techniques have sparked a growing interest in understanding the complex interactions between anatomical regions of interest (ROIs), forming into brain networks that play a crucial role in various clinical tasks, such as neural pattern discovery and disorder diagnosis. In recent years, graph neural networks (GNNs) have emerged as powerful tools for analyzing network data. However, due to the complexity of data acquisition and regulatory restrictions, brain network studies remain limited in scale and are often confined to local institutions.

View Article and Find Full Text PDF

Functional brain networks represent dynamic and complex interactions among anatomical regions of interest (ROIs), providing crucial clinical insights for neural pattern discovery and disorder diagnosis. In recent years, graph neural networks (GNNs) have proven immense success and effectiveness in analyzing structured network data. However, due to the high complexity of data acquisition, resulting in limited training resources of neuroimaging data, GNNs, like all deep learning models, suffer from overfitting.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) is one of the most common imaging modalities to investigate brain functions. Recent studies in neuroscience stress the great potential of functional brain networks constructed from fMRI data for clinical predictions. Traditional functional brain networks, however, are noisy and unaware of downstream prediction tasks, while also incompatible with the deep graph neural network (GNN) models.

View Article and Find Full Text PDF

Biological networks are commonly used in biomedical and healthcare domains to effectively model the structure of complex biological systems with interactions linking biological entities. However, due to their characteristics of high dimensionality and low sample size, directly applying deep learning models on biological networks usually faces severe overfitting. In this work, we propose R-MIXUP, a Mixup-based data augmentation technique that suits the symmetric positive definite (SPD) property of adjacency matrices from biological networks with optimized training efficiency.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has become one of the most common imaging modalities for brain function analysis. Recently, graph neural networks (GNN) have been adopted for fMRI analysis with superior performance. Unfortunately, traditional functional brain networks are mainly constructed based on similarities among region of interests (ROIs), which are noisy and can lead to inferior results for GNN models.

View Article and Find Full Text PDF

Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis.

View Article and Find Full Text PDF

Multimodal brain networks characterize complex connectivities among different brain regions from both structural and functional aspects and provide a new means for mental disease analysis. Recently, Graph Neural Networks (GNNs) have become a de facto model for analyzing graph-structured data. However, how to employ GNNs to extract effective representations from brain networks in multiple modalities remains rarely explored.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session17qv7oas24e4b0c8u3dsqg0e7116ttsb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once