The foods that we eat are closely linked to the development and function of neurophysiology, affecting mood, cognition, and mental health. Yet, it is not known whether and how dietary patterns affect brain function and mood. Here, we explored the impact of various diets on the behavior of mice.
View Article and Find Full Text PDFWounding is one of the most common healthcare problems. Bioactive hydrogels have attracted much attention in first-aid hemostasis and wound healing due to their excellent biocompatibility, antibacterial properties, and pro-healing bioactivity. However, their applications are limited by inadequate mechanical properties.
View Article and Find Full Text PDFThe lysosome-targeting chimera (LYTAC) approach has shown promise for the targeted degradation of secreted and membrane proteins via lysosomes. However, there have been challenges in design, development, and targeting. Here, we have designed a genetically engineered transferrin receptor (TfR)-mediated lysosome-targeting chimera (TfR-LYTAC) that is efficiently internalized via TfR-mediate endocytosis and targets PD-L1 for lysosomal degradation in cultured cells but not in vivo due to short half-life and poor tumor targeting.
View Article and Find Full Text PDFPhosphatidic acid (PA), the simplest phospholipid, acts as a key metabolic intermediate and second messenger that impacts diverse cellular and physiological processes across species ranging from microbes to plants and mammals. The cellular levels of PA dynamically change in response to stimuli, and multiple enzymatic reactions can mediate its production and degradation. PA acts as a signalling molecule and regulates various cellular processes via its effects on membrane tethering, enzymatic activities of target proteins, and vesicular trafficking.
View Article and Find Full Text PDFD-2-Hydroxyglutarate (D-2HG) is an α-ketoglutarate-derived mitochondrial metabolite that causes D-2-hydroxyglutaric aciduria, a devastating developmental disorder. How D-2HG adversely affects mitochondria is largely unknown. Here, we report that in Caenorhabditis elegans, loss of the D-2HG dehydrogenase DHGD-1 causes D-2HG accumulation and mitochondrial damage.
View Article and Find Full Text PDFThe effectors of the Rab7 small GTPase play multiple roles in Rab7-dependent endosome-lysosome and autophagy-lysosome pathways. However, it is largely unknown how distinct Rab7 effectors coordinate to maintain the homeostasis of late endosomes and lysosomes to ensure appropriate endolysosomal and autolysosomal degradation. Here we report that WDR91, a Rab7 effector required for early-to-late endosome conversion, is essential for lysosome function and homeostasis.
View Article and Find Full Text PDFLysosomes are degradation and signaling organelles that adapt their biogenesis to meet many different cellular demands; however, it is unknown how lysosomes change their numbers for cell division. Here, we report that the cyclin-dependent kinases CDK4/6 regulate lysosome biogenesis during the cell cycle. Chemical or genetic inactivation of CDK4/6 increases lysosomal numbers by activating the lysosome and autophagy transcription factors TFEB and TFE3.
View Article and Find Full Text PDFAlzheimer's disease is the most common neurodegenerative disease, and has a high level of genetic heritability and population heterogeneity. In this study, we performed the whole-exome sequencing of Han Chinese patients with familial and/or early-onset Alzheimer's disease, followed by independent validation, imaging analysis and function characterization. We identified an exome-wide significant rare missense variant rs3792646 (p.
View Article and Find Full Text PDFAlzheimer disease (AD) is the most common neurodegenerative disease. An imbalance between the production and clearance of Aβ (amyloid beta) is considered to be actively involved in AD pathogenesis. Macroautophagy/autophagy is a major cellular pathway leading to the removal of aggregated proteins, and upregulation of autophagy represents a plausible therapeutic strategy to combat overproduction of neurotoxic Aβ.
View Article and Find Full Text PDFDepression is one of the most frequent psychiatric symptoms observed in people during the development of Alzheimer's disease (AD). We hypothesized that genetic factors conferring risk of depression might affect AD development. In this study, we screened 31 genes, which were located in 19 risk loci for major depressive disorder (MDD) identified by two recent large genome-wide association studies (GWAS), in AD patients at the genomic and transcriptomic levels.
View Article and Find Full Text PDFIntroduction: Profiling the spatial-temporal expression pattern and characterizing the regulatory networks of brain tissues are vital for understanding the pathophysiology of Alzheimer's disease (AD).
Methods: We performed a systematic integrated analysis of expression profiles of AD-affected brain tissues (684 AD and 562 controls). A network-based convergent functional genomic approach was used to prioritize possible regulator genes during AD development, followed by functional characterization.
RNA editing was first discovered in mitochondrial RNA molecular. However, whether adenosine-to-inosine (A-to-I) RNA editing has functions in nuclear genes involved in mitochondria remains elusive. Here, we retrieved 707,246 A-to-I RNA editing sites in Macaca mulatta leveraging massive transcriptomes of 30 different tissues and genomes of nine tissues, together with the reported data, and found that A-to-I RNA editing occurred frequently in nuclear genes that have functions in mitochondria.
View Article and Find Full Text PDFAutophagy is involved in the pathogenesis of neurodegenerative diseases including Parkinson disease (PD). However, little is known about the regulation of autophagy in neurodegenerative process. In this study, we characterized aberrant activation of autophagy induced by neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and demonstrated that melatonin has a protective effect on neurotoxicity.
View Article and Find Full Text PDFNeuropsychopharmacology
March 2016
The immune response is highly active in Alzheimer's disease (AD). Identification of genetic risk contributed by immune genes to AD may provide essential insight for the prognosis, diagnosis, and treatment of this neurodegenerative disease. In this study, we performed a genetic screening for AD-related top immune genes identified in Europeans in a Chinese cohort, followed by a multiple-stage study focusing on Complement Factor H (CFH) gene.
View Article and Find Full Text PDFRecent advances in nanomedicine provide promising alternatives for cancer treatment that may improve the survival of patients with metastatic disease. The goal of the present study was to evaluate graphene oxide (GO) as a potential anti-metastatic agent. For this purpose, GO was modified with polyethylene glycol (PEG) to form PEG-modified GO (PEG-GO), which improves its aqueous stability and biocompatibility.
View Article and Find Full Text PDFGraphene and its derivatives have become important nanomaterials worldwide and have potential medical applications including in vivo diagnosis, drug delivery, and photothermal therapy of cancer. However, little is known about their effect on the metastasis of cancer cells, which is the cause of over 90% of patient deaths. In the present investigation, we provide direct evidence that low concentrations of pristine graphene and graphene oxide show no apparent influence on the viability of MDA-MB-231 human breast cancer cells, PC3 human prostate cancer cells, as well as B16F10 mouse melanoma cells.
View Article and Find Full Text PDFGraphene may have attractive properties for some biomedical applications, but its potential adverse biological effects, in particular, possible modulation of immune responses, require further investigation. Macrophages are one of the most important effector cells of the innate immune system, and play pivotal roles in the response to graphene exposure. We have previously reported that exposure of macrophages to high concentrations of graphene triggers cell death via MAPK- and TGF-related pathways.
View Article and Find Full Text PDFUpon apoptotic stimuli, lysosomal proteases, including cathepsins and chymotrypsin, are released into cytosol due to lysosomal membrane permeabilization (LMP), where they trigger apoptosis via the lysosomal-mitochondrial pathway of apoptosis. Herein, the mechanism of LMP was investigated. We found that caspase 8-cleaved Bid (tBid) could result in LMP directly.
View Article and Find Full Text PDF