Publications by authors named "Heiti Paves"

The integrity and dynamics of actin cytoskeleton is necessary not only for plant cell architecture but also for membrane trafficking-mediated processes such as polar auxin transport, senescence, and cell death. In , the inactivation of actin-based molecular motors, class XI myosins, affects the membrane trafficking and integrity of actin cytoskeleton, and thus causes defective plant growth and morphology, altered lifespan and reduced fertility. To evaluate the potential contribution of class XI myosins to the auxin response, senescence and cell death, we followed the flower and leaf development in the triple gene knockout mutant (3KO) and in rescued line stably expressing myosin XI-K:YFP (3KOR).

View Article and Find Full Text PDF

Myosins and actin filaments in the actomyosin system act in concert in regulating cell structure and dynamics and are also assumed to contribute to plant gravitropic response. To investigate the role of the actomyosin system in the inflorescence stem gravitropism, we used single and multiple mutants affecting each of the 17 myosins of class VIII and XI. We show that class XI but not class VIII myosins are required for stem gravitropism.

View Article and Find Full Text PDF

Background: The positioning and dynamics of vesicles and organelles, and thus the growth of plant cells, is mediated by the acto-myosin system. In Arabidopsis there are 13 class XI myosins which mediate vesicle and organelle transport in different cell types. So far the involvement of five class XI myosins in cell expansion during the shoot and root development has been shown, three of which, XI-1, XI-2, and XI-K, are essential for organelle transport.

View Article and Find Full Text PDF

Cocksfoot mottle virus (CfMV) localization in oat plants was analyzed during three weeks post infection by immunohistochemical staining to follow its spread through different tissues. In early stages of infection, the virus was first detectable in phloem parenchyma and bundle sheath cells of inoculated leaves. Bundle sheath and phloem parenchyma were also the cell types where the virus was first detected in stems and systemic leaves of infected plants.

View Article and Find Full Text PDF

Cocksfoot mottle virus (CfMV) coat protein (CP) localization was studied in plant and mammalian cells. Fusion of the full-length CP with enhanced green fluorescent protein (EGFP) localized to the cell nucleus whereas similar constructs lacking the first 33 N-terminal amino acids of CP localized to the cytoplasm. CP and EGFP fusions containing mutations in the arginine-rich motif of CP localized to the cytoplasm and to the nucleus in plant cells indicating the involvement of the motif in nuclear localization.

View Article and Find Full Text PDF

Cocksfoot mottle sobemovirus (CfMV) encodes a non-conserved protein P1 from the 5' ORF1 of genomic RNA. The functions of CfMV P1 are unknown. In the current study we show that P1-deficient CfMV can replicate both in oat leaves and barley suspension culture cells but can not infect oat plants systemically.

View Article and Find Full Text PDF

Cells are protected from the surrounding environment by plasma membrane which is impenetrable for most hydrophilic molecules. In the last 10 years cell-penetrating peptides (CPPs) have been discovered and developed. CPPs enter mammalian cells and carry cargo molecules over the plasma membrane with a molecular weight several times their own.

View Article and Find Full Text PDF

Background: Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now.

Results: Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei.

View Article and Find Full Text PDF