Plasma membrane repair in response to damage is essential for cell viability. The ferlin family protein dysferlin plays a key role in Ca-dependent membrane repair in striated muscles. Mutations in dysferlin lead to a spectrum of diseases known as dysferlinopathies.
View Article and Find Full Text PDFThis article is the second part of a study reporting the results of a novel carbon capture and utilization (CCU) process, which converts atmospheric CO into solid carbon materials. The CCU process combines direct air capture (DAC) with catalytic methanation, which is then followed by methane pyrolysis in a reactor filled with liquid tin. While Part 1 discussed the performance of the overall process and individual process steps regarding conversions and yields, Part 2 characterizes the solid carbon products obtained under various synthesis conditions.
View Article and Find Full Text PDFCardiac muscle α-actin is a key protein of the thin filament in the muscle sarcomere that, together with myosin thick filaments, produce force and contraction important for normal heart function. Missense mutations in cardiac muscle α-actin can cause hypertrophic cardiomyopathy, a complex disorder of the heart characterized by hypercontractility at the molecular scale that leads to diverse clinical phenotypes. While the clinical aspects of hypertrophic cardiomyopathy have been extensively studied, the molecular mechanisms of missense mutations in cardiac muscle α-actin that cause the disease remain largely elusive.
View Article and Find Full Text PDFLaser-induced graphene (LIG) has been emerging as a promising electrode material for supercapacitors due to its cost-effective and straightforward fabrication approach. However, LIG-based supercapacitors still face challenges with limited capacitance and stability. To overcome these limitations, in this work, we present a novel, cost-effective, and facile fabrication approach by integrating LIG materials with candle-soot nanoparticles.
View Article and Find Full Text PDFMembers of the myosin superfamily of molecular motors are large mechanochemical ATPases that are implicated in an ever-expanding array of cellular functions. This review focuses on mammalian nonmuscle myosin-2 (NM2) paralogs, ubiquitous members of the myosin-2 family of filament-forming motors. Through the conversion of chemical energy into mechanical work, NM2 paralogs remodel and shape cells and tissues.
View Article and Find Full Text PDFActin is a highly conserved and fundamental protein in eukaryotes and participates in a broad spectrum of cellular functions. Cells maintain a conserved ratio of actin isoforms, with muscle and non-muscle actins representing the main actin isoforms in muscle and non-muscle cells, respectively. Actin isoforms have specific and redundant functional roles and display different biochemistries, cellular localization, and interactions with myosins and actin-binding proteins.
View Article and Find Full Text PDFVoltage-gated Na1.5 channels are central to the generation and propagation of cardiac action potentials. Aberrations in their function are associated with a wide spectrum of cardiac diseases including arrhythmias and heart failure.
View Article and Find Full Text PDFSpectrins are membrane cytoskeletal proteins generally thought to function as heterotetramers comprising two α-spectrins and two β-spectrins. They influence cell shape and Hippo signaling, but the mechanism by which they influence Hippo signaling has remained unclear. We have investigated the role and regulation of the β-heavy spectrin (β-spectrin, encoded by the gene) in wing imaginal discs.
View Article and Find Full Text PDFIndustrial biocatalysis plays an important role in the development of a sustainable economy, as enzymes can be used to synthesize an enormous range of complex molecules under environmentally friendly conditions. To further develop the field, intensive research is being conducted on process technologies for continuous flow biocatalysis in order to immobilize large quantities of enzyme biocatalysts in microstructured flow reactors under conditions that are as gentle as possible in order to realize efficient material conversions. Here, monodisperse foams consisting almost entirely of enzymes covalently linked via SpyCatcher/SpyTag conjugation are reported.
View Article and Find Full Text PDFActin isoforms organize into distinct networks that are essential for the normal function of eukaryotic cells. Despite a high level of sequence and structure conservation, subtle differences in their design principles determine the interaction with myosin motors and actin-binding proteins. Therefore, identifying how the structure of actin isoforms relates to function is important for our understanding of normal cytoskeletal physiology.
View Article and Find Full Text PDFIdentifying the protein targets of drugs is an important but tedious process. Existing proteomic approaches enable unbiased target identification but lack the throughput needed to screen larger compound libraries. Here, we present a compound interaction screen on a photoactivatable cellulose membrane (CISCM) that enables target identification of several drugs in parallel.
View Article and Find Full Text PDFDue to its essential role in cellular processes, actin is a common target for bacterial toxins. One such toxin, TccC3, is an effector domain of the ABC-toxin produced by entomopathogenic bacteria of spp. Unlike other actin-targeting toxins, TccC3 uniquely ADP-ribosylates actin at Thr-148, resulting in the formation of actin aggregates and inhibition of phagocytosis.
View Article and Find Full Text PDFCancer cell migration during metastasis is mediated by a highly polarized cytoskeleton. MARK2 and its invertebrate homolog Par1B are kinases that regulate the microtubule cytoskeleton to mediate polarization of neurons in mammals and embryos in invertebrates. However, the role of MARK2 in cancer cell migration is unclear.
View Article and Find Full Text PDFWe solved the near-atomic resolution structure of smooth muscle myosin-2 in the autoinhibited state (10) using single-particle cryo–electron microscopy. The 3.4-Å structure reveals the precise molecular architecture of 10 and the structural basis for myosin-2 regulation.
View Article and Find Full Text PDFLiquids are traditionally handled and stored in solid vessels. Solid walls are not functional, adaptive, or self-repairing, and are difficult to remove and re-form. Liquid walls can overcome these limitations, but cannot form free-standing 3D walls.
View Article and Find Full Text PDFCochlear hair cells each possess an exquisite bundle of actin-based stereocilia that detect sound. Unconventional myosin 15 (MYO15) traffics and delivers critical molecules required for stereocilia development and thus is essential for building the mechanosensory hair bundle. Mutations in the human MYO15A gene interfere with stereocilia trafficking and cause hereditary hearing loss, DFNB3, but the impact of these mutations is not known, as MYO15 itself is poorly characterized.
View Article and Find Full Text PDFA method for the fabrication of flexible electrical circuits on polyaramid substrates is presented based on laser-induced carbonization followed by copper electroplating. Locally carbonized flexible sheets of polyaramid (Nomex), by laser radiation, create rough and highly porous microstructures that show a higher degree of graphitization than thermally carbonized Nomex sheets. The found recipe for laser-induced carbonization creates conductivities of up to ∼45 S cm, thereby exceeding that observed for thermally pyrolyzed materials (∼38 S cm) and laser carbon derived from Kapton using the same laser wavelength (∼35 S cm).
View Article and Find Full Text PDFThe growth of ZnO clusters supported by ZnO-bilayers on Ag(111) and the interaction of these oxide nanostructures with water have been studied by a multi-technique approach combining temperature-dependent infrared reflection absorption spectroscopy (IRRAS), grazing-emission X-ray photoelectron spectroscopy, and density functional theory calculations. Our results reveal that the ZnO bilayers exhibiting graphite-like structure are chemically inactive for water dissociation, whereas small ZnO clusters formed on top of these well-defined, yet chemically passive supports show extremely high reactivity - water is dissociated without an apparent activation barrier. Systematic isotopic substitution experiments using H O/D O/D O allow identification of various types of acidic hydroxyl groups.
View Article and Find Full Text PDFAcceleration and unification of drug discovery is important to reduce the effort and cost of new drug development. Diverse chemical and biological conditions, specialized infrastructure and incompatibility between existing analytical methods with high-throughput, nanoliter scale chemistry make the whole drug discovery process lengthy and expensive. Here, we demonstrate a chemBIOS platform combining on-chip chemical synthesis, characterization and biological screening.
View Article and Find Full Text PDFPolar surfaces of solid oxides are intrinsically unstable and tend to reconstruct due to the diverging electrostatic energy and thus often exhibit unique physical and chemical properties. However, a quantitative description of the restructuring mechanism of these polar surfaces remains challenging. Here we provide an atomic-level picture of the refaceting process that governs the surface polarity compensation of cubic ceria nanoparticles based on the accurate reference data acquired from the well-defined model systems.
View Article and Find Full Text PDFThe ultrathin precursor film surrounding droplets of liquid on a solid surface is used here as a confined reaction medium in order to drive a reaction that would not occur in bulk fluid. Sodium carbonate and calcium chloride mixed together in the presence of the organic thiol dithiothreitol (DTT) produced crystals of gypsum, or calcium sulfate, instead of the otherwise expected calcium carbonate. The possible sources of sulfate in the system are contaminants in the DTT or the oxidation product of the DTT sulfhydryl.
View Article and Find Full Text PDFDetailed information on structural, chemical, and physical properties of natural cleaved (10.4) calcite surfaces was obtained by a combined atomic force microscopy (AFM) and infrared (IR) study using CO as a probe molecule under ultrahigh vacuum (UHV) conditions. The structural quality of the surfaces was determined using non-contact AFM (NC-AFM), which also allowed assigning the adsorption site of CO molecules.
View Article and Find Full Text PDFSulfur as a side product of natural gas and oil refining is an underused resource. Converting landfilled sulfur waste into materials merges the ecological imperative of resource efficiency with economic considerations. A strategy to convert sulfur into polymeric materials is the inverse vulcanization reaction of sulfur with alkenes.
View Article and Find Full Text PDFActive non-muscle myosin II (NMII) enables migratory cell polarization and controls dynamic cellular processes, such as focal adhesion formation and turnover and cell division. Filament assembly and force generation depend on NMII activation through the phosphorylation of Ser19 of the regulatory light chain (RLC). Here, we identify amino acid Tyr (Y) 155 of the RLC as a novel regulatory site that spatially controls NMII function.
View Article and Find Full Text PDF