Publications by authors named "Heisig P"

Background: Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets.

Methods: While unsupervised analysis in the medical literature commonly only utilizes a single clustering algorithm for a given data set, we developed a large-scale model with 605 different combinations of target dimensionalities as well as transformation and clustering algorithms and subsequent meta-clustering of individual results. With this model, we investigated a large cohort of 1383 patients from 59 centers in Germany with newly diagnosed acute myeloid leukemia for whom 212 clinical, laboratory, cytogenetic and molecular genetic parameters were available.

View Article and Find Full Text PDF

In order to develop novel inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the UDP binding site of the enzyme, a series of aldotetronic acid-based hydroxamic acids was accessed in chiral pool syntheses starting from 4,6-O-benzylidene-d-glucose and l-arabinitol. The synthesized hydroxamic acids were tested for LpxC inhibitory activity in vitro, revealing benzyl ether 17a ((2S,3S)-4-(benzyloxy)-N,3-dihydroxy-2-[(4-{[4-(morpholinomethyl)phenyl]ethynyl}benzyl)oxy]butanamide) as the most potent LpxC inhibitor. This compound was additionally tested for antibacterial activity against a panel of clinically relevant Gram-negative bacteria, bacterial uptake, and susceptibility to efflux pumps.

View Article and Find Full Text PDF

Achievement of complete remission signifies a crucial milestone in the therapy of acute myeloid leukemia (AML) while refractory disease is associated with dismal outcomes. Hence, accurately identifying patients at risk is essential to tailor treatment concepts individually to disease biology. We used nine machine learning (ML) models to predict complete remission and 2-year overall survival in a large multicenter cohort of 1,383 AML patients who received intensive induction therapy.

View Article and Find Full Text PDF

LpxC inhibitors represent a promising class of novel antibiotics selectively combating Gram-negative bacteria. In chiral pool syntheses starting from D- and L-xylose, a series of four 2r,3c,4t-configured C-furanosidic LpxC inhibitors was obtained. The synthesized hydroxamic acids were tested for antibacterial and LpxC inhibitory activity, the acquired biological data were compared with those of previously synthesized C-furanosides, and molecular docking studies were performed to rationalize the observed structure-activity relationships.

View Article and Find Full Text PDF

A multidrug-resistant Salmonella enterica serovar Typhimurium with reduced susceptibility to ciprofloxacin was isolated from the blood of a hospitalized child in Ghana. DNA sequencing identified a novel gyrB mutation at codon 466 (Glu466Asp). An increase in fluoroquinolone susceptibility after the introduction of a wild-type gyrB(+) allele demonstrated that the gyrB466 mutation had a direct effect on fluoroquinolone susceptibility.

View Article and Find Full Text PDF

Background: Salmonella ranks among the leading causes of bloodstream infections in sub-Saharan Africa. Multidrug resistant typhoidal and nontyphoidal Salmonella (NTS) isolates have been previously identified in this region. However, resistance to ciprofloxacin has rarely been reported in West Africa.

View Article and Find Full Text PDF

Zwitterionic thin films containing α-amino phosphonic acid moieties were successfully introduced on silicon surfaces and their antifouling properties were investigated. Initially, the substrates were modified with a hybrid polymer, composed of poly(methylsilsesquioxane) (PMSSQ) and poly(4-vinyl benzaldehyde) (PStCHO). Next, a Kabachnik-Fields post-polymerization modification (sur-KF-PMR) of the functionalized aldehyde surfaces was conducted with different amines and dialkyl phosphonates.

View Article and Find Full Text PDF

Trimeric catecholates have been designed for the stable immobilization of effector molecules on metal surfaces. The design of these catecholates followed a biomimetic approach and was inspired by natural multivalent metal binders, such as mussel adhesion proteins (MAPs) and siderophores. Three catecholates have been conjugated to central scaffolds based on adamantyl or trisalkylmethyl core structures.

View Article and Find Full Text PDF

Uncomplicated urinary tract infections are typically monobacterial and are predominantly caused by Escherichia coli. Although several effective treatment options are available, the rates of antibiotic resistance in urinary isolates of E. coli have increased during the last decade.

View Article and Find Full Text PDF

Due to the increasing prevalence of antibiotic resistance and the yet low output of the genomics-based drug discovery approach novel strategies are urgently needed to detect new antibiotics. One such strategy uses known ubiquitous targets like DNA topoisomerases. However, to detect inhibitors of these enzymes by an in vitro assay time-consuming isolation of enzymes and DNA followed by electrophoretic separation of topoisomers are required.

View Article and Find Full Text PDF

Fluoroquinolone (FQ)-resistant extraintestinal pathogenic Escherichia coli (FQ(r) ExPEC) strains from phylogenetic group B2 are undergoing epidemic spread. Isolates belonging to phylogenetic group B2 are generally more virulent than other E. coli isolates; therefore, resistance to FQs among group B2 isolates is concerning.

View Article and Find Full Text PDF

EUCAST expert rules have been developed to assist clinical microbiologists and describe actions to be taken in response to specific antimicrobial susceptibility test results. They include recommendations on reporting, such as inferring susceptibility to other agents from results with one, suppression of results that may be inappropriate, and editing of results from susceptible to intermediate or resistant or from intermediate to resistant on the basis of an inferred resistance mechanism. They are based on current clinical and/or microbiological evidence.

View Article and Find Full Text PDF

Escherichia coli sequence type 131 (ST131), an emergent multidrug-resistant extraintestinal pathogen, has spread epidemically among humans and was recently isolated from companion animals. To assess for human-companion animal commonality among ST131 isolates, 214 fluoroquinolone-resistant extraintestinal E. coli isolates (205 from humans, 9 from companion animals) from diagnostic laboratories in Australia, provisionally identified as ST131 by PCR, selectively underwent PCR-based O typing and bla(CTX-M-15) detection.

View Article and Find Full Text PDF

In studies on efficacy testing of topical antimicrobial products, randomisation of test areas and a well-balanced gender ratio are not always standard. Our aim was to generate an evidence-based skin flora map using a systematic review of the literature supplemented by in vivo tests to identify variables that impact on microbial density. Ten out of 83 evaluated studies were reviewed.

View Article and Find Full Text PDF

We isolated a clinical Escherichia coli strain with an antimicrobial resistance phenotype characteristic for the expression of an AmpC beta-lactamase. Molecular methods revealed a novel, plasmid-localized variant of CMY-2 with a substitution of valine 231 for serine (V231S), which was designated CMY-42. Like the CMY-2-like AmpC beta-lactamase CMY-30, carrying the substitution V231G, CMY-42 displayed increased activity toward expanded spectrum cephalosporins.

View Article and Find Full Text PDF

Objectives: Finafloxacin is an investigational fluoroquinolone exhibiting broad-spectrum activity that is enhanced under slightly acidic conditions (pH 5.0-6.5).

View Article and Find Full Text PDF

Fluoroquinolone resistance is an emerging problem in companion animal practice. The present study aimed to determine comparative fluoroquinolone minimum inhibitory concentrations (MICs) for enrofloxacin, marbofloxacin and pradofloxacin and identify plasmid-mediated quinolone resistance (PMQR) mechanisms in 41 multidrug-resistant (MDR) Escherichia coli isolates representing three main clonal groups (CGs) cultured from extraintestinal infections in dogs. All isolates were resistant to fluoroquinolones and the PMQR genes qnrA1, qnrB2, qnrS1 and qepA were identified in isolates from each CG.

View Article and Find Full Text PDF

Urinary tract infections (UTI) usually are monoinfections caused by the endogenous microflora including gram-negatives, such as Escherichia coli, or gram-positives, like enterococci. This allows for an empiric treatment of uncomplicated UTIs and a short duration of therapy to minimize the probability for the development of resistance. Resistance often is based upon mutations altering the drug target (sulfonamides, trimethoprim, fluoroquinolones, fosfomycin) or acquisition of resistance genes (beta-lactams).

View Article and Find Full Text PDF

We investigated whether exposure to sub-lethal concentrations of chlorhexidine digluconate (CHG) changed the response of five Staphylococcus spp. to human beta-Defensin-3 (hBD-3). The change in response for each strain was determined in vitro with time-kill experiments in suspension by comparing the mean log(10) reduction caused by hBD-3 at 1.

View Article and Find Full Text PDF

Fluoroquinolone resistance is becoming more common in veterinary medicine. Resistance is due to a combination of chromosomal and plasmid-mediated fluoroquinolone resistance (PMQR) mechanisms. The aim of the present study was to screen 17 multidrug-resistant Enterobacter isolates obtained from opportunistic infections in companion animals for chromosomal and plasmid-mediated fluoroquinolone resistance determinants and to determine if they are co-located with other antimicrobial resistance genes including beta-lactamases.

View Article and Find Full Text PDF

Type II topoisomerases are ubiquitous enzymes that play an essential role in the control of replicative DNA synthesis and share structural and functional homology among different prokaryotic and eukaryotic organisms. Antibacterial fluoroquinolones target prokaryotic topoisomerases at concentrations 100- to 1000-fold lower than mammalian enzymes, the preferred targets of anticancer drugs such as etoposide. The mechanisms of action of both of these types of inhibitors involve the fixation of an intermediate reaction step, where the enzyme is covalently bound to an enzyme-mediated DNA double-strand break (DSB).

View Article and Find Full Text PDF

The antiseptic efficacy of ethanol, isopropanol, and n-propanol at 60%, 70%, and 89.5% (all vol/vol) was analyzed after 2, 3, or 4 min of application to the forehead, back, and abdomen of 180 volunteers by the use of a standardized swab sampling method. Results of recolonization by the aerobic skin flora of the upper arms and backs of 20 volunteers were compared 72 h after treatment with 0.

View Article and Find Full Text PDF

Background: Effective neutralization of active agents is essential to obtain valid efficacy results, especially when non-volatile active agents like chlorhexidine digluconate (CHG) are tested. The aim of this study was to determine an effective and non-toxic neutralizing mixture for a propan-1-ol solution containing 2% CHG.

Methods: Experiments were carried out according to ASTM E 1054-02.

View Article and Find Full Text PDF

Objectives: The live vaccine strain TAD Salmonella vacT (vacT) carrying gyrA mutations W59R, G75A, D87G and A866S shows resistance to nalidixic acid and rifampicin, but increased susceptibility to macrolides, fluoroquinolones and phenylalanyl-arginyl-beta-naphthylamide. This phenotype contrasts with the presence of the gyrA mutation D87G usually associated with reduced susceptibility to fluoroquinolones. Thus, a possible compensatory effect on the suppression of gyrA-mediated resistance by gyrA mutations within the quinolone resistance-determining region alone or in combination (intragenic) or by a mutation affecting AcrAB-TolC (extragenic), the major multidrug resistance efflux pump in Salmonella, was investigated.

View Article and Find Full Text PDF

The genetic basis for multidrug resistance (mdr) due to overexpression of mdr efflux pumps in Escherichia coli usually includes alterations in genes encoding global regulators, like MarA, SoxS, and Rob. In Salmonella, in addition to these regulators, Rma, for which no homolog exists in E. coli, seems to play a role in the regulation of efflux pumps.

View Article and Find Full Text PDF