Using an atomic force microscope, a nanoscale wear characterization method has been applied to a commercial steel substrate AISI 52100, a common bearing material. Two wear mechanisms were observed by the presented method: atom attrition and elastoplastic ploughing. It is shown that not only friction can be used to classify the difference between these two mechanisms, but also the 'degree of wear'.
View Article and Find Full Text PDFThis study investigates epitaxially oriented pentacene films grown on Cu(110) surfaces crystallizing either in the "thin film" phase with standing molecules or in the "single crystal" structure with molecules lying with their long axes parallel to the substrate.
View Article and Find Full Text PDFWe report on a two-dimensional highly ordered self-assembled monolayer (SAM) directly grown on a bare polymer surface. Semiconducting SAMs are utilized in field-effect transistors and combined into integrated circuits as 4-bit code generators. The driving force to form highly ordered SAMs is packing of the liquid crystalline molecules caused by the interactions between the linear alkane moieties and the pi-pi stacking of the conjugated thiophene units.
View Article and Find Full Text PDF