Publications by authors named "Heinz P Nasheuer"

The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis.

View Article and Find Full Text PDF

Replication protein A (RPA) is a heterotrimeric protein complex and the main single-stranded DNA (ssDNA)-binding protein in eukaryotes. RPA has key functions in most of the DNA-associated metabolic pathways and DNA damage signalling. Its high affinity for ssDNA helps to stabilise ssDNA structures and protect the DNA sequence from nuclease attacks.

View Article and Find Full Text PDF

In their influential reviews, Hanahan and Weinberg coined the term 'Hallmarks of Cancer' and described genome instability as a property of cells enabling cancer development. Accurate DNA replication of genomes is central to diminishing genome instability. Here, the understanding of the initiation of DNA synthesis in origins of DNA replication to start leading strand synthesis and the initiation of Okazaki fragment on the lagging strand are crucial to control genome instability.

View Article and Find Full Text PDF

The initiation of Okazaki fragment synthesis during cellular DNA replication is a crucial step for lagging strand synthesis, which is carried out by the primase function of DNA polymerase α-primase (Pol-prim). Since cellular replication protein A (RPA) prevents primase from starting RNA synthesis on single-stranded DNA (ssDNA), primase requires auxiliary factors, such as the simian virus 40 (SV40) T antigen (Tag), for the initiation reaction on RPA-bound ssDNA. Here, we investigated the ability of Tag variants and Tag protein complexes to bind to ssDNA and their resulting effects on the stimulation of Pol-prim on free and RPA-bound ssDNA.

View Article and Find Full Text PDF

Polyomavirus infections occur commonly in humans and are normally nonfatal. However, in immunocompromised individuals, they are intractable and frequently fatal. Due to a lack of approved drugs to treat polyomavirus infections, cidofovir, a phosphonate nucleotide analog approved to treat cytomegalovirus infections, has been repurposed as an antipolyomavirus agent.

View Article and Find Full Text PDF

DNA replication is a central process in all living organisms. Polyomavirus DNA replication serves as a model system for eukaryotic DNA replication and has considerably contributed to our understanding of basic replication mechanisms. However, the details of the involved processes are still unclear, in particular regarding lagging strand synthesis.

View Article and Find Full Text PDF

Knowledge about precise numbers of specific molecules is necessary for understanding and verification of biological pathways. The RAD51 protein is central in the repair of DNA double-strand breaks (DSBs) by homologous recombination repair and understanding its role in cellular pathways is crucial to design mechanistic DNA repair models. Here, we determined the number of RAD51 molecules in several human cell lines including primary fibroblasts.

View Article and Find Full Text PDF

B-cell immunoglobulin binding protein (BiP) is an essential endoplasmic reticulum (ER) chaperone normally found in the ER lumen. However, BiP also has other extracellular and intracellular functions. As it is unclear whether peripheral BiP has a signal and/or ER retention sequence, here we produced and biochemically characterised four variants of BiP.

View Article and Find Full Text PDF

The modulation of expression levels of fluorescent fusion proteins (FFPs) is central for recombinant DNA technologies in modern biology as overexpression of proteins contributes to artifacts in biological experiments. In addition, some microscopy techniques such as fluorescence correlation spectroscopy (FCS) and single-molecule-based techniques are very sensitive to high expression levels of FFPs. To reduce the levels of recombinant protein expression in comparison with the commonly used, very strong CMV promoter, the herpes simplex virus thymidine kinase (TK) gene promoter, and mutants thereof were analyzed.

View Article and Find Full Text PDF

The replication factor Cdc45 has essential functions in the initiation and elongation steps of eukaryotic DNA replication and plays an important role in the intra-S-phase checkpoint. Its interactions with other replication proteins during the cell cycle and after intra-S-phase checkpoint activation are only partially characterized. In the present study, we show that the C terminal part of Cdc45 may mediate its interactions with Claspin.

View Article and Find Full Text PDF

Eukaryotic DNA replication is a dynamic process requiring the co-operation of specific replication proteins. We measured the mobility of eGFP-Cdc45 by Fluorescence Correlation Spectroscopy (FCS) in vivo in asynchronous cells and in cells synchronized at the G1/S transition and during S phase. Our data show that eGFP-Cdc45 mobility is faster in G1/S transition compared to S phase suggesting that Cdc45 is part of larger protein complex formed in S phase.

View Article and Find Full Text PDF

BK polyomavirus (BKV) establishes persistent, low-level, and asymptomatic infections in most humans and causes polyomavirus-associated nephropathy (PVAN) and other pathologies in some individuals. The activation of BKV replication following kidney transplantation, leading to viruria, viremia, and, ultimately, PVAN, is associated with immune suppression as well as inflammation and stress from ischemia-reperfusion injury of the allograft, but the stimuli and molecular mechanisms leading to these pathologies are not well defined. The replication of BKV DNA in cell cultures is regulated by the viral noncoding control region (NCCR) comprising the core origin and flanking sequences, to which BKV T antigen (Tag), cellular proteins, and small regulatory RNAs bind.

View Article and Find Full Text PDF

Small noncoding RNAs regulate a variety of cellular processes, including genomic imprinting, chromatin remodeling, replication, transcription, and translation. Here, we report small replication-regulating RNAs (srRNAs) that specifically inhibit DNA replication of the human BK polyomavirus (BKV) in vitro and in vivo. srRNAs from FM3A murine mammary tumor cells were enriched by DNA replication assay-guided fractionation and hybridization to the BKV noncoding control region (NCCR) and synthesized as cDNAs.

View Article and Find Full Text PDF

The activation of the human polyomavirus BK causes polyomavirus-associated nephropathy in immunocompromised humans. Studies of the virus have been restricted since the virus DNA replication is species specific. Cell-based and cell-free DNA replication systems, including the BK virus (BKV) monopolymerase DNA replication system using purified proteins, reproduce the species specificity (28).

View Article and Find Full Text PDF

Repair of single-stranded DNA breaks before DNA replication is critical in maintaining genomic stability; however, how cells deal with these lesions during S phase is not clear. Using combined approaches of proteomics and in vitro and in vivo protein-protein interaction, we identified the p58 subunit of DNA Pol alpha-primase as a new binding partner of XRCC1, a key protein of the single strand break repair (SSBR) complex. In vitro experiments reveal that the binding of poly(ADP-ribose) to p58 inhibits primase activity by competition with its DNA binding property.

View Article and Find Full Text PDF

BK virus (BKV) causes persistent and asymptomatic infections in most humans and is the etiologic agent of polyomavirus-associated nephropathy (PVAN) and other pathologies. Unfortunately, there are no animal models with which to study activation of BKV replication in the human kidney and the accompanying PVAN. Here we report studies of the restriction of BKV replication in murine cells and extracts and the cause(s) of this restriction.

View Article and Find Full Text PDF

Replication protein A (RPA), the eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for all pathways of DNA metabolism. To study the function of RPA in living cells the second largest RPA subunit and an N-terminal deletion mutant thereof were fused to green fluorescent protein (GFP; GFP-RPA2 and GFP-RPA2deltaN, respectively) in a controlled, molecular biological way. These proteins were expressed in HeLa cells under the control of the inducible tetracycline expression system.

View Article and Find Full Text PDF