Publications by authors named "Heinz G Hoymann"

Background: Allergic asthma is a chronic lung disease resulting from inappropriate immune responses to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma.

Objective: We analyzed the mechanisms of perinatal tolerance induction to allergens, with particular focus on the role of B cells in preconception and early intrauterine immune priming.

View Article and Find Full Text PDF

The surfactant-associated proteins SP-A and D are pattern recognition molecules with collectin structure. A single nucleotide polymorphism (SNP) exchanging a methionine (Met) for a threonine (Thr) in the amino-terminal SP-D domain influences the oligomeric structure and function of the protein. In this study, we investigated the susceptibility of mice transgenic for the human SP-D Met(11)Thr SNP to allergic airway inflammation and consequences for microRNA (miRNA, miR) expression.

View Article and Find Full Text PDF

The CD26-associated enzymatic activity of dipeptidyl peptidase-4 (DPP4) as well as the recruitment of CD26(+) T cells increase under allergic airway inflammation. Furthermore, genetic deficiency of CD26/DPP4 exerts protective effects in experimental asthma. Therefore, CD26/DPP4 might represent a novel therapeutic target in asthma.

View Article and Find Full Text PDF

The ICH guideline S7A requires safety pharmacology tests including measurements of pulmonary function. In the first step - as part of the "core battery" - lung function tests in conscious animals are requested. If potential adverse effects raise concern for human safety, these should be explored in a second step as a "follow-up study.

View Article and Find Full Text PDF

Toll-like receptor (TLR) mediated signaling induces pro-inflammatory responses and can both suppress and exacerbate allergic responses in the airways. The aim of our study was to directly compare the efficacy of different TLR agonists in inhibiting or exacerbating the development of Th2-mediated responses in the airways and investigate if the suppressive effects were associated with increased pro-inflammatory responses. Mice were immunized on day 0, 14 and 21 by intraperitoneal injection of ovalbumin/alum and exposed to ovalbumin aerosol on day 26 and 27.

View Article and Find Full Text PDF

We hypothesized that formation of pulmonary emphysema could be diminished after previous activation of stem cells. Animals received either a daily dose of the hematopoietic growth factors (GF; recombinant rat stem cell factor plus recombinant granulocyte colony stimulating factor; n=6, Elastase/GF group) or vehicle (n=9, Elastase/Sham group) starting 3 days before intratracheal instillation of elastase or vehicle and continued for another 25 days. Control animals were treated with NaCl (n=9, Sham/Sham group).

View Article and Find Full Text PDF

Neuregulin is an important growth factor in fetal surfactant synthesis, and downregulation of its receptor, ErbB4, impairs fetal surfactant synthesis. We hypothesized that pulmonary ErbB4 deletion will affect the developing lung leading to an abnormal postnatal lung function. ErbB4-deleted lungs of 11- to 14-wk-old adult HER4heart mice, rescued from their lethal cardiac defects, were studied for the effect on lung function, alveolarization, and the surfactant system.

View Article and Find Full Text PDF

Precise and repeatable measurements of pulmonary function in intact mice or rats are becoming increasingly important for experimental investigations on various respiratory disorders like asthma and for pharmacological, safety-pharmacological or toxicological testing of drugs or chemicals. This review provides a short overview of typical in-vivo measurement techniques, discusses their advantages and disadvantages and presents two of these methods in detail: the noninvasive head-out body plethysmography and an invasive but repeatable body-plethysmography in orotracheally intubated rodents. It will be demonstrated that these methods are able to monitor bronchoconstriction in safety-pharmacological tests or in asthma models showing early allergic response or late airway hyperresponsiveness in response to inhaled allergens and demonstrate drug effects on pulmonary endpoints.

View Article and Find Full Text PDF

Airway hyperresponsiveness (AHR) is a hallmark of bronchial asthma. Important features of this exaggerated response to bronchoconstrictive stimuli have mostly been investigated in vivo in intact animals or in vitro in isolated tracheal or bronchial tissues. Both approaches have important advantages but also certain limitations.

View Article and Find Full Text PDF

Background: This study seeks to compare the ability of repeatable invasive and noninvasive lung function methods to assess allergen-specific and cholinergic airway responsiveness (AR) in intact, spontaneously breathing BALB/c mice.

Methods: Using noninvasive head-out body plethysmography and the decrease in tidal midexpiratory flow (EF50), we determined early AR (EAR) to inhaled Aspergillus fumigatus antigens in conscious mice. These measurements were paralleled by invasive determination of pulmonary conductance (GL), dynamic compliance (Cdyn) and EF50 in another group of anesthetized, orotracheally intubated mice.

View Article and Find Full Text PDF

Airway hyperresponsiveness and airway inflammation are hallmarks of allergic asthma, the etiology of which is crucially linked to the presence of Th2 cytokines. A role for the complement anaphylatoxins C3a and C5a in allergic asthma was suggested, as deficiencies of the C3a receptor (C3aR) and of complement factor C5 modulate airway hyperresponsiveness, airway inflammation, and Th2 cytokine levels. However, such models do not allow differentiation of effects on the sensitization phase and the effector phase of the allergic response, respectively.

View Article and Find Full Text PDF

Precise and repeatable measurements of pulmonary function in intact mice are becoming increasingly important for experimental investigations on various respiratory disorders including asthma. Here, we present validation of a novel in vivo method that, for the first time, combines direct and repetitive recordings of standard pulmonary mechanics with cholinergic aerosol challenges in anesthetized, orotracheally intubated, spontaneously breathing mice. We demonstrate that, in several groups of nonsensitized BALB/c mice, dose-related increases in pulmonary resistance and dynamic compliance to aerosolized methacholine are reproducible over short and extended intervals without causing detectable cytological alterations in the bronchoalveolar lavage or relevant histological changes in the proximal trachea and larynx regardless of the number of orotracheal intubations.

View Article and Find Full Text PDF

Keratinocyte growth factor (KGF) is a mitogen for pulmonary epithelial cells. Intratracheal administration of KGF to adult rats results in alveolar epithelial type II and bronchiolar epithelial cell proliferation. While cellular responses to KGF have been intensively studied, functional consequences regarding lung function are unknown.

View Article and Find Full Text PDF

Keratinocyte growth factor (KGF) induces transient proliferation of alveolar type II cells (AEII) associated with surfactant alterations. To test the hypothesis that homeostasis of intracellular phospholipid stores is maintained under KGF-induced hyperplasia, we (1) collected tissue from adult rat lungs, fixed for light and electron microscopy 3 days after intratracheal instillation of 5 mg recombinant human (rHu) KGF/kg body weight or phosphate-buffered saline (PBS), and from untreated control animals (five animals/group) for design-based stereology of AEII and lamellar body (LB) ultrastructure; and (2) we analyzed uptake and distribution of instilled radiolabeled phospholipids. After rHuKGF, AEII-coverage of alveolar walls (PBS:8.

View Article and Find Full Text PDF

This study was designed to evaluate the value and applicability of tidal breathing pattern analysis to assess bronchoconstriction in conscious rats. Using noninvasive, head-out body plethysmography and the decrease in tidal midexpiratory flow (EF(50)), we measured airway responsiveness (AR) to inhaled acetylcholine and allergen in conscious Brown-Norway rats, followed by invasive determination of pulmonary conductance (GL) and EF(50) in anesthetized rats. Dose-response studies to acetylcholine showed that noninvasively recorded EF(50) closely reflected the dose-dependent decreases observed with the invasive monitoring of simultaneously measured GL and EF(50).

View Article and Find Full Text PDF