Publications by authors named "Heinz Fehrenbach"

A strong inflammatory immune response drives the lung pathology in neonatal acute respiratory distress syndrome (nARDS). Anti-inflammatory therapy is therefore a promising strategy for improved treatment of nARDS. We demonstrate a new function of the anionic phospholipids POPG, DOPG, and PIP2 as inhibitors of IL-1β release by LPS and ATP-induced inflammasome activation in human monocyte-derived and lung macrophages.

View Article and Find Full Text PDF

Background: Children with asthma have impaired production of interleukin (IL) 37; in mice, IL-37 reduces hallmarks of experimental allergic asthma (EAA). However, it remains unclear how IL-37 exerts its inhibitory properties in asthma. This study aimed to identify the mechanism(s) by which IL-37 controls allergic inflammation.

View Article and Find Full Text PDF

The Research Center Borstel developed a bottom-up approach based on communication and team scouts to create a culture that fosters research integrity.

View Article and Find Full Text PDF

Extensive remodeling of the airways is a major characteristic of chronic inflammatory lung diseases such as asthma or chronic obstructive pulmonary disease (COPD). To elucidate the importance of a deregulated immune response in the airways for remodeling processes, we established a matching Drosophila model. Here, triggering the Imd (immune deficiency) pathway in tracheal cells induced organ-wide remodeling.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a life-threatening lung disease. Although cigarette smoke was considered the main cause of development, the heterogeneous nature of the disease leaves it unclear whether other factors contribute to the predisposition or impaired regeneration response observed. Recently, epigenetic modification has emerged to be a key player in the pathogenesis of COPD.

View Article and Find Full Text PDF

Background: Originally, the neuropeptide α-melanocyte-stimulating hormone (α-MSH) has been described as a mediator of skin pigmentation. However, recent studies have shown that α-MSH is able to modulate inflammation in various tissues including the lung. So far, it is still not clear whether α-MSH also plays a role in allergic bronchial asthma.

View Article and Find Full Text PDF

Experimental models are critical for the understanding of lung health and disease and are indispensable for drug development. However, the pathogenetic and clinical relevance of the models is often unclear. Further, the use of animals in biomedical research is controversial from an ethical perspective.

View Article and Find Full Text PDF

Exposure to exogenous noxae, such as particulate matter, can trigger acute aggravations of allergic asthma-a chronic inflammatory airway disease. We tested whether Carbon Black nanoparticles (CBNP) with or without surface polycyclic aromatic hydrocarbons (PAH) aggravate an established allergic airway inflammation in mice. In an ovalbumin mouse model, Printex90 (P90), P90 coated with benzo[a]pyrene (P90-BaP) or 9-nitroanthracene (P90-9NA), or acetylene soot exhibiting a mixture of surface PAH (AS-PAH) was administered twice (70 µL, 100 µg/mL) during an established allergic airway inflammation.

View Article and Find Full Text PDF

The biological and immune-protective properties of surfactant-derived phospholipids and phospholipid subfractions in the context of neonatal inflammatory lung disease are widely unknown. Using a porcine neonatal triple-hit acute respiratory distress syndrome (ARDS) model (repeated airway lavage, overventilation, and LPS instillation into airways), we assessed whether the supplementation of surfactant (S; poractant alfa) with inositol derivatives [inositol 1,2,6-trisphosphate (IP3) or phosphatidylinositol 3,5-bisphosphate (PIP2)] or phosphatidylglycerol subfractions [16:0/18:1-palmitoyloleoyl-phosphatidylglycerol (POPG) or 18:1/18:1-dioleoyl-phosphatidylglycerol (DOPG)] would result in improved clinical parameters and sought to characterize changes in key inflammatory pathways behind these improvements. Within 72 h of mechanical ventilation, the oxygenation index (S+IP3, S+PIP2, and S+POPG), the ventilation efficiency index (S+IP3 and S+POPG), the compliance (S+IP3 and S+POPG) and resistance (S+POPG) of the respiratory system, and the extravascular lung water index (S+IP3 and S+POPG) significantly improved compared with S treatment alone.

View Article and Find Full Text PDF

Background: Failure to attain peak lung function by early adulthood is a risk factor for chronic lung diseases. Previously, we reported that C3H/HeJ mice have about twice total lung capacity (TLC) compared to JF1/MsJ mice. We identified seven lung function quantitative trait loci (QTL: Lfnq1-Lfnq7) in backcross/intercross mice derived from these inbred strains.

View Article and Find Full Text PDF

Background: Carbon black nanoparticles (CBNP) are mainly composed of carbon, with a small amount of other elements (including hydrogen and oxygen). The toxicity of CBNP has been attributed to their large surface area, and through adsorbing intrinsically toxic substances, such as polycyclic aromatic hydrocarbons (PAH). It is not clear whether a PAH surface coating changes the toxicological properties of CBNP by influencing their physicochemical properties, through the specific toxicity of the surface-bound PAH, or by a combination of both.

View Article and Find Full Text PDF

Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.

View Article and Find Full Text PDF

In our mouse model, gastric acid-suppression is associated with antigen-specific IgE and anaphylaxis development. We repeatedly observed non-responder animals protected from food allergy. Here, we aimed to analyse reasons for this protection.

View Article and Find Full Text PDF

Rationale: The new cytokine IL-37 has been described as a negative regulator of innate immunity. It reduces activation of dendritic cells and the production of proinflammatory mediators in murine and human immune cells. Although recent results from the CLARA childhood asthma cohort suggested an impact of IL-37 on human asthma pathogenesis, the receptor for IL-37 and its implication in adaptive immune responses have not been determined.

View Article and Find Full Text PDF

The gasotransmitter hydrogen sulfide (H2S) is emerging as a mediator of lung physiology and disease. Recent studies revealed that H2S administration limited perturbations to lung structure in experimental animal models of bronchopulmonary dysplasia (BPD), partially restoring alveolarization, limiting pulmonary hypertension, limiting inflammation, and promoting epithelial repair. No studies have addressed roles for endogenous H2S in lung development.

View Article and Find Full Text PDF

Viral infection of the respiratory tract represents the major cause of acute asthma exacerbations. dsRNA is produced as an intermediate during replication of respiratory viruses and triggers immune responses via TLR3. This study aimed at clarifying the mechanisms underlying TLR3 triggered exacerbation of experimental allergic asthma.

View Article and Find Full Text PDF

Question: Inflammatory cell numbers are important endpoints in clinical studies relying on endobronchial biopsies. Assumption-based bidimensional (2D) counting methods are widely used, although theoretically design-based stereologic three-dimensional (3D) methods alone offer an unbiased quantitative tool. We assessed the method agreement between 2D and 3D counting designs in practice when applied to identical samples in parallel.

View Article and Find Full Text PDF

Arrested alveolarization is the pathological hallmark of bronchopulmonary dysplasia (BPD), a complication of premature birth. Here, the impact of systemic application of hydrogen sulfide (H2S) on postnatal alveolarization was assessed in a mouse BPD model. Exposure of newborn mice to 85% O2 for 10 days reduced the total lung alveoli number by 56% and increased alveolar septal wall thickness by 29%, as assessed by state-of-the-art stereological analysis.

View Article and Find Full Text PDF

Background And Aims: Specific hyper-responsiveness towards an allergen and non-specific airway hyperreactivity both impair quality of life in patients with respiratory allergic diseases. We aimed to investigate cellular responses following specific and non-specific airway challenges locally and systemically in i) sensitized BALB/c mice challenged with grass pollen allergen Phl p 5, and in ii) grass pollen sensitized allergic rhinitis subjects undergoing specific airway challenge in the Vienna Challenge Chamber (VCC).

Methods And Results: BALB/c mice (n = 20) were intraperitoneally immunized with grass pollen allergen Phl p 5 and afterwards aerosol challenged with either the specific allergen Phl p 5 (n = 10) or the non-specific antigen ovalbumin (OVA) (n = 10).

View Article and Find Full Text PDF

Respiratory distress and bronchopulmonary dysplasia (BPD) are major problems in preterm infants that are often addressed by glucocorticoid treatment and increased oxygen supply, causing catabolic and injurious side effects. Recombinant human keratinocyte growth factor (rhKGF) is noncatabolic and antiapoptotic and increases surfactant pools in immature lungs. Despite its usefulness in injured neonatal lungs, the mechanisms of improved surfactant homeostasis in vivo and systemic effects on lipid homeostasis are unknown.

View Article and Find Full Text PDF

Background: Allergen-specific immunoglobulin (Ig) E initiates the effector cascade of allergic asthma and has been identified as a valuable target for therapeutic treatment of this disease. The proteasome inhibitor bortezomib was previously shown to deplete Ig-secreting plasma cells and to efficiently suppress Ig serum titers. The present study aimed at evaluating the therapeutic potential of the proteasome inhibitor bortezomib in allergic bronchial asthma.

View Article and Find Full Text PDF

Background: Excessive extracellular matrix deposition occurs as a result of repetitive injury-repair cycles and plays a central role in the pathogenesis of chronic inflammatory diseases, such as allergic asthma. The molecular mechanism leading to aberrant collagen deposition is not fully understood.

Objective: We sought to test the hypothesis that increased nerve growth factor (NGF) production contributes to collagen deposition in the airways during chronic allergic airway inflammation.

View Article and Find Full Text PDF

Background: We have previously shown that the allergic sensitization to ovalbumin does not represent a superantigen-like immune response. In gene-targeted mice (ΔD-iD) with a single modified Diversity gene segment (D(H)) of the immunoglobulin heavy chain, enriched for charged amino acids, the asthma phenotype in a murine model was markedly alleviated compared to wild-type animals.

Objective: We now sought to determine whether the confinement to a single D(H) gene segment alone leads to a reduced allergic phenotype.

View Article and Find Full Text PDF

Background: Ischemia/reperfusion (I/R) injury, involved in primary graft dysfunction following lung transplantation, leads to inactivation of intra-alveolar surfactant which facilitates injury of the blood-air barrier. The alveolar epithelial type II cells (AE2 cells) synthesize, store and secrete surfactant; thus, an intracellular surfactant pool stored in lamellar bodies (Lb) can be distinguished from the intra-alveolar surfactant pool. The aim of this study was to investigate ultrastructural alterations of the intracellular surfactant pool in a model, mimicking transplantation-related procedures including flush perfusion, cold ischemia and reperfusion combined with mechanical ventilation.

View Article and Find Full Text PDF

Pulmonary emphysema is a disease characterized by alveolar cellular loss and inflammation. Recently, excessive apoptosis of structural alveolar cells has emerged as a major mechanism in the development of emphysema. Here, we investigated the proapoptotic and monocyte chemoattractant cytokine endothelial monocyte-activating protein 2 (EMAPII).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionaaiskctsjo4gfqmni1upn392c57usen1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once