Publications by authors named "Heinz Beck"

Transplantation of induced pluripotent stem cell-derived neural cells represents a promising strategy for treating neurodegenerative diseases. However, reprogramming of somatic cells and their subsequent neural differentiation is complex and time-consuming, thereby impeding autologous applications. Recently, direct transcription factor-based conversion of blood cells into induced neural stem cells (iNSCs) has emerged as a potential alternative.

View Article and Find Full Text PDF

Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line, and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity.

View Article and Find Full Text PDF
Article Synopsis
  • Acute brain slices are commonly used to study the central nervous system, but the impact of injury on microglial cells—the brain's immune system—remains unclear.
  • This study examines how microglial cells change over time and affect neuron function and network organization in these slices, showing that they respond to injury.
  • The findings indicate that microglia play a crucial role in maintaining neuronal network integrity, and their dysfunction leads to significant impairments in brain activity both in the lab and in living organisms.
View Article and Find Full Text PDF

Memorizing locations that are harmful or dangerous is a key capability of all organisms and requires an integration of affective and spatial information. In mammals, the dorsal hippocampus mainly processes spatial information, while the intermediate to ventral hippocampal divisions receive affective information via the amygdala. However, how spatial and aversive information is integrated is currently unknown.

View Article and Find Full Text PDF

Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity.

View Article and Find Full Text PDF

Neural computation is often traced in terms of either rate- or phase-codes. However, most circuit operations will simultaneously affect information across both coding schemes. It remains unclear how phase and rate coded information is transmitted, in the face of continuous modification at consecutive processing stages.

View Article and Find Full Text PDF

Dendrites of hippocampal CA1 pyramidal cells amplify clustered glutamatergic input by activation of voltage-gated sodium channels and N-methyl-D-aspartate receptors (NMDARs). NMDAR activity depends on the presence of NMDAR co-agonists such as D-serine, but how co-agonists influence dendritic integration is not well understood. Using combinations of whole-cell patch clamp, iontophoretic glutamate application, two-photon excitation fluorescence microscopy and glutamate uncaging in acute rat and mouse brain slices we found that exogenous D-serine reduced the threshold of dendritic spikes and increased their amplitude.

View Article and Find Full Text PDF

Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-like kinase (SLK) mediates cell-autonomous regulation of excitation-inhibition balance in the thalamocortical feedforward circuit, but not in the feedback circuit.

View Article and Find Full Text PDF

Memory deficits are a debilitating symptom of epilepsy, but little is known about mechanisms underlying cognitive deficits. Here, we describe a Na+ channel-dependent mechanism underlying altered hippocampal dendritic integration, degraded place coding and deficits in spatial memory. Two-photon glutamate uncaging experiments revealed a marked increase in the fraction of hippocampal first-order CA1 pyramidal cell dendrites capable of generating dendritic spikes in the kainate model of chronic epilepsy.

View Article and Find Full Text PDF

Focal cortical epilepsies are frequently refractory to available anticonvulsant drug therapies. One key factor contributing to this state is the limited availability of animal models that allow to reliably study focal cortical seizures and how they recruit surrounding brain areas in vivo. In this study, we selectively expressed the inhibitory chemogenetic receptor, hM4D, in GABAergic neurons in focal cortical areas using viral gene transfer.

View Article and Find Full Text PDF

The firing of neurons throughout the brain is determined by the precise relations between excitatory and inhibitory inputs, and disruption of their balance underlies many psychiatric diseases. Whether or not these inputs covary over time or between repeated stimuli remains unclear due to the lack of experimental methods for measuring both inputs simultaneously. We developed a new analytical framework for instantaneous and simultaneous measurements of both the excitatory and inhibitory neuronal inputs during a single trial under current clamp recording.

View Article and Find Full Text PDF

The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture.

View Article and Find Full Text PDF

Ischemic stroke (IS) is still among the leading causes of death and disability worldwide. The pathogenic mechanisms beyond its development are several and are complex and this is the main reason why a functional therapy is still missed. The beneficial effects of natural compounds against cardiovascular diseases and IS have been investigated for a long time.

View Article and Find Full Text PDF

The hippocampal dentate gyrus is an important relay conveying sensory information from the entorhinal cortex to the hippocampus proper. During exploration, the dentate gyrus has been proposed to act as a pattern separator. However, the dentate gyrus also shows structured activity during immobility and sleep.

View Article and Find Full Text PDF

Objective: Many antiseizure drugs (ASDs) act on voltage-dependent sodium channels, and the molecular basis of these effects is well established. In contrast, how ASDs act on the level of neuronal networks is much less understood.

Methods: In the present study, we determined the effects of eslicarbazepine (S-Lic) on different types of inhibitory neurons, as well as inhibitory motifs.

View Article and Find Full Text PDF

Transgenic Cre-recombinase expressing mouse lines are widely used to express fluorescent proteins and opto-/chemogenetic actuators, making them a cornerstone of modern neuroscience. The investigation of interneurons in particular has benefitted from the ability to genetically target specific cell types. However, the specificity of some Cre driver lines has been called into question.

View Article and Find Full Text PDF

Feedback inhibitory motifs are thought to be important for pattern separation across species. How feedback circuits may implement pattern separation of biologically plausible, temporally structured input in mammals is, however, poorly understood. We have quantitatively determined key properties of feedback inhibition in the mouse dentate gyrus, a region critically involved in pattern separation.

View Article and Find Full Text PDF

Inhibitory interneurons, organized into canonical feedforward and feedback motifs, play a key role in controlling normal and pathological neuronal activity. We demonstrate prominent quantitative changes in the dynamics of feedback inhibition in a rat model of chronic epilepsy (male Wistar rats). Systematic interneuron recordings revealed a large decrease in intrinsic excitability of basket cells and oriens-lacunosum moleculare interneurons in epileptic animals.

View Article and Find Full Text PDF

Background: Neuropathic pain resulting from peripheral nerve lesions is a common medical condition, but current analgesics are often insufficient. The identification of key molecules involved in pathological pain processing is a prerequisite for the development of new analgesic drugs. Hyperexcitability of nociceptive DRG-neurons due to regulation of voltage-gated ion-channels is generally assumed to contribute strongly to neuropathic pain.

View Article and Find Full Text PDF

Optogenetics enables manipulation of biological processes with light at high spatio-temporal resolution to control the behavior of cells, networks, or even whole animals. In contrast to the performance of excitatory rhodopsins, the effectiveness of inhibitory optogenetic tools is still insufficient. Here we report a two-component optical silencer system comprising photoactivated adenylyl cyclases (PACs) and the small cyclic nucleotide-gated potassium channel SthK.

View Article and Find Full Text PDF

Recent reports suggest that induced neurons (iNs), but not induced pluripotent stem cell (iPSC)-derived neurons, largely preserve age-associated traits. Here, we report on the extent of preserved epigenetic and transcriptional aging signatures in directly converted induced neural stem cells (iNSCs). Employing restricted and integration-free expression of SOX2 and c-MYC, we generated a fully functional, bona fide NSC population from adult blood cells that remains highly responsive to regional patterning cues.

View Article and Find Full Text PDF

Objective: Pharmacoresistance is a problem affecting ∼30% of chronic epilepsy patients. An understanding of the mechanisms of pharmacoresistance requires a precise understanding of how antiepileptic drugs interact with their targets in control and epileptic tissue. Although the effects of (S)-licarbazepine (S-Lic) on sodium channel fast inactivation are well understood and have revealed maintained activity in epileptic tissue, it is not known how slow inactivation processes are affected by S-Lic in epilepsy.

View Article and Find Full Text PDF

Despite the development of numerous novel anticonvulsant drugs, ∼30% of epilepsy patients remain refractory to antiepileptic drugs (AEDs). Many established and novel AEDs reduce hyperexcitability via voltage- and use-dependent inhibition of voltage-gated Na channels. For the widely used anticonvulsant carbamazepine (CBZ), use-dependent block of Na channels is significantly reduced both in experimental and human epilepsy.

View Article and Find Full Text PDF

Modern neuroscientific techniques that specifically manipulate and measure neuronal activity in behaving animals now allow bridging of the gap from the cellular to the behavioral level. However, in doing so, they also pose new challenges. Research using incompletely defined manipulations in a high-dimensional space without clear hypotheses is likely to suffer from multiple well-known conceptual and statistical problems.

View Article and Find Full Text PDF

Purpose Of Review: Focal cortical dysplasias (FCDs) represent common cortical malformations that are frequently associated with epilepsy. They have so far not been well understood in terms of their molecular pathogenesis, and with respect to mechanisms of seizure emergence.

Recent Findings: Several recent studies have succeeded in making significant advances in understanding the molecular genetics, in particular FCD type II.

View Article and Find Full Text PDF