Publications by authors named "Heinsbroek J"

There has been a recent renewed interest in the potential use of psychedelic drugs as therapeutics for certain neuropsychiatric disorders, including substance use disorders. The psychedelic drug 2,5-dimethoxy-4-iodoamphetamine (DOI) has demonstrated therapeutic efficacy in preclinical models of opioid use disorder (OUD). Alcohol is commonly co-used in individuals with OUD, but preclinical models that recapitulate this comorbidity are lacking.

View Article and Find Full Text PDF

Background: The potential use of psychedelic drugs as therapeutics for neuropsychiatric disorders has been limited by their hallucinogenic properties. To overcome this limitation, we developed and characterized tabernanthalog (TBG), a novel analogue of the indole alkaloids ibogaine and 5-methoxy--dimethyltryptamine with reduced cardiac arrhythmogenic risk and a lack of classical psychedelic drugs-induced sensory alterations. We previously demonstrated that TBG has therapeutic efficacy in a preclinical model of opioid use disorder (OUD) in rats and in a binge model of alcohol drinking in mice.

View Article and Find Full Text PDF

The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders.

View Article and Find Full Text PDF

The dorsal subiculum (dSub) is one of the key structures responsible for the formation of hippocampal memory traces but the contribution of individual ionic currents to its cognitive function is not well studied. Although we recently reported that low-voltage-activated T-type calcium channels (T-channels) are crucial for the burst firing pattern regulation in the dSub pyramidal neurons, their potential role in learning and memory remains unclear. Here we used in vivo local field potential recordings and miniscope calcium imaging in freely behaving mice coupled with pharmacological and genetic tools to address this gap in knowledge.

View Article and Find Full Text PDF

As opioid-related fatalities continue to rise, the need for novel opioid use disorder (OUD) treatments could not be more urgent. Two separate hypothalamic neuropeptide systems have shown promise in preclinical OUD models. The oxytocin system, originating in the paraventricular nucleus (PVN), may protect against OUD severity.

View Article and Find Full Text PDF

Cocaine addiction is a chronic, relapsing disorder characterized by maladaptation in the brain mesolimbic and nigrostriatal dopamine system. Although changes in the properties of D2-receptor-expressing medium spiny neurons (D2-MSNs) and connected striatal circuits following cocaine treatment are known, the contributions of altered D2-receptor (D2R) function in mediating the rewarding properties of cocaine remain unclear. Here, we describe how a 7-day exposure to cocaine alters dopamine signaling by selectively reducing the sensitivity, but not the expression, of nucleus accumbens D2-MSN D2Rs via an alteration in the relative expression and coupling of G protein subunits.

View Article and Find Full Text PDF

Here, we use optogenetics and chemogenetics to investigate the contribution of the paraventricular thalamus (PVT) to nucleus accumbens (NAc) pathway in aversion and heroin relapse in two different heroin self-administration models in rats. In one model, rats undergo forced abstinence in the home cage prior to relapse testing, and in the other, they undergo extinction training, a procedure that is likened to cognitive behavioral therapy. We find that the PVT→NAc pathway is both sufficient and necessary to drive aversion and heroin seeking after abstinence, but not extinction.

View Article and Find Full Text PDF

Activity in numerous brain regions drives heroin seeking, but no circuits that limit heroin seeking have been identified. Furthermore, the neural circuits controlling opioid choice are unknown. In this study, we examined the role of the infralimbic cortex (IL) to nucleus accumbens shell (NAshell) pathway during heroin choice and relapse.

View Article and Find Full Text PDF

Substance use disorder (SUD) is characterized, in part by behavior biased toward drug use and away from natural sources of reward (e.g., social interaction, food, sex).

View Article and Find Full Text PDF

Poorly regulated reward seeking is a central feature of substance use disorder. Recent research shows that rewarding drug-related experiences induce synchronous activation of a discrete number of neurons in the nucleus accumbens that are causally linked to reward-related contexts. Here we comprehensively characterize the specific ensemble of neurons built through experience that are linked to seeking behavior.

View Article and Find Full Text PDF

Glutamate is the main excitatory neurotransmitter in the brain and is of critical importance for the synaptic and circuit mechanisms that underlie opioid addiction. Opioid memories formed over the course of repeated drug use and withdrawal can become powerful stimuli that trigger craving and relapse, and glutamatergic neurotransmission is essential for the formation and maintenance of these memories. In this review, we discuss the mechanisms by which glutamate, dopamine, and opioid signaling interact to mediate the primary rewarding effects of opioids, and cover the glutamatergic systems and circuits that mediate the expression, extinction, and reinstatement of opioid seeking over the course of opioid addiction.

View Article and Find Full Text PDF

Projections from the nucleus accumbens to the ventral pallidum (VP) regulate relapse in animal models of addiction. The VP contains GABAergic (VP) and glutamatergic (VP) neurons, and a subpopulation of GABAergic neurons co-express enkephalin (VP). Rabies tracing reveals that VP and VP neurons receive preferential innervation from upstream D1- relative to D2-expressing accumbens neurons.

View Article and Find Full Text PDF

The prefrontal cortex is an important regulator of fear expression in humans and rodents. Specifically, the rodent prelimbic (PL) prefrontal cortex drives fear expression during both encoding and retrieval of fear memory. Neuronal ensembles have been proposed to function as memory encoding units, and their re-activation is thought to be necessary for memory retrieval and expression of conditioned behavior.

View Article and Find Full Text PDF

Repeated exposure to drug-associated cues without reward (extinction) leads to refraining from drug seeking in rodents. We determined if refraining is associated with transient synaptic plasticity (t-SP) in nucleus accumbens shell (NAshell), akin to the t-SP measured in the NAcore during cue-induced reinstatement of drug seeking. Using whole cell patch electrophysiology, we found that medium spiny neurons (MSNs) in NAshell expressed increased ratio of AMPA to NMDA glutamate receptor currents during refraining, which normalized to baseline levels by the end of the 2-hour extinction session.

View Article and Find Full Text PDF

Outputs from the nucleus accumbens (NAc) include projections to the ventral pallidum and the ventral tegmental area and subtantia nigra in the ventral mesencephalon. The medium spiny neurons (MSN) that give rise to these pathways are GABAergic and consist of two populations of equal number that are segregated by differentially expressed proteins, including D1- and D2-dopamine receptors. Afferents to the ventral pallidum arise from both D1- and D2-MSNs, whereas the ventral mesencephalon is selectively innervated by D1-MSN.

View Article and Find Full Text PDF

Cocaine-associated cues and contexts can precipitate drug seeking in humans and in experimental animals. Glutamatergic synapses in the core subcompartment of the nucleus accumbens (NAcore) undergo transient potentiation in response to presenting drug-associated cues. The NAcore contains two populations of medium spiny neurons (MSNs) that differentially express D1 or D2 dopamine receptors.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) regulates a variety of physiological processes, and several studies have explored the role of BDNF in addiction-related brain regions like the nucleus accumbens core (NAcore). We sought to understand the rapid effects of endogenous BDNF on cocaine seeking. Rats were trained to self-administer cocaine and extinguished.

View Article and Find Full Text PDF

Kappa opioid receptor (KOR) agonists have known anti-addiction properties and can reduce drug seeking. Their potential for clinical use has largely been daunted by their aversive properties mediated through p38 MAPK signaling. Here we examined the therapeutic potential of the KOR agonist U50,488 (U50) to reduce cocaine seeking in a self-administration model.

View Article and Find Full Text PDF

The idea that interconnected neuronal ensembles code for specific behaviors has been around for decades; however, recent technical improvements allow studying these networks and their causal role in initiating and maintaining behavior. In particular, the role of ensembles in drug-seeking behaviors in the context of addiction is being actively investigated. Concurrent with breakthroughs in quantifying ensembles, research has identified a role for synaptic glutamate spillover during relapse.

View Article and Find Full Text PDF

Individuals suffering from substance-use disorders develop strong associations between the drug's rewarding effects and environmental cues, creating powerful, enduring triggers for relapse. We found that dephosphorylated, nuclear histone deacetylase 5 (HDAC5) in the nucleus accumbens (NAc) reduced cocaine reward-context associations and relapse-like behaviors in a cocaine self-administration model. We also discovered that HDAC5 associates with an activity-sensitive enhancer of the Npas4 gene and negatively regulates NPAS4 expression.

View Article and Find Full Text PDF

Many studies support a perspective that addictive drugs usurp brain circuits used by natural rewards, especially for the dopamine-dependent reinforcing qualities of both drugs and natural rewards. Reinstated drug seeking in animal models of relapse relies on glutamate spillover from cortical terminals synapsing in the nucleus accumbens core (NAcore) to stimulate metabotropic glutamate receptor5 (mGluR5) on neuronal nitric oxide synthase (nNOS) interneurons. Contrasting the release of dopamine that is shared by sucrose and drugs of abuse, reinstated sucrose seeking does not induce glutamate spillover.

View Article and Find Full Text PDF

Unlabelled: Distinct populations of D1- and D2-dopamine receptor-expressing medium spiny neurons (D1-/D2-MSNs) comprise the nucleus accumbens, and activity in D1-MSNs promotes, whereas activity in D2-MSNs inhibits, motivated behaviors. We used chemogenetics to extend D1-/D2-MSN cell specific regulation to cue-reinstated cocaine seeking in a mouse model of self-administration and relapse, and found that either increasing activity in D1-MSNs or decreasing activity in D2-MSNs augmented cue-induced reinstatement. Both D1- and D2-MSNs provide substantial GABAergic innervation to the ventral pallidum, and chemogenetic inhibition of ventral pallidal neurons blocked the augmented reinstatement elicited by chemogenetic regulation of either D1- or D2-MSNs.

View Article and Find Full Text PDF

Unlabelled: Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced relapse is correlated with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses on medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore) and requires spillover of glutamate from prefrontal cortical afferents. We used a rodent self-administration/reinstatement model of relapse to show that cue-induced t-SP and reinstated cocaine seeking result from glutamate spillover, initiating a metabotropic glutamate receptor 5 (mGluR5)-dependent increase in nitric oxide (NO) production.

View Article and Find Full Text PDF