ASAP1 is a multidomain Arf GTPase-activating protein (ArfGAP) that catalyzes GTP hydrolysis on the small GTPase Arf1 and is implicated in cancer progression. The PH domain of ASAP1 enhances its activity greater than 7 orders of magnitude but the underlying mechanisms remain poorly understood. Here, we combined Nuclear Magnetic Resonance (NMR), Molecular Dynamic (MD) simulations and mathematical modeling of functional data to build a comprehensive structural-mechanistic model of the complex of Arf1 and the ASAP1 PH domain on a membrane surface.
View Article and Find Full Text PDFThis study investigates the potential of antimicrobial peptides (AMPs) as alternatives to combat antibiotic resistance, with a focus on two AMPs containing unnatural amino acids (UAAs), E2-53R (16 AAs) and LE-54R (14 AAs). In both peptides, valine is replaced by norvaline (Nva), and tryptophan is replaced by 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic). Microbiological studies reveal their potent activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria without any toxicity to eukaryotic cells at test concentrations up to 32 μM.
View Article and Find Full Text PDFThis research addresses the growing menace of antibiotic resistance by exploring antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. Specifically, we investigate two linear amphipathic AMPs, LE-53 (12-mer) and LE-55 (16-mer), finding that the shorter LE-53 exhibits greater bactericidal activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria. Remarkably, both AMPs are non-toxic to eukaryotic cells.
View Article and Find Full Text PDFAntibiotics are losing effectiveness as bacteria become resistant to conventional drugs. To find new alternatives, antimicrobial peptides (AMPs) are rationally designed with different lengths, charges, hydrophobicities (), and hydrophobic moments (), containing only three types of amino acids: arginine, tryptophan, and valine. Six AMPs with low minimum inhibitory concentrations (MICs) and <25% toxicity to mammalian cells are selected for biophysical studies.
View Article and Find Full Text PDFSPLUNC1 (short palate lung and nasal epithelial clone 1) is a multifunctional host defense protein found in human respiratory tract with antimicrobial properties. In this work, we compare the biological activities of four SPLUNC1 antimicrobial peptide (AMP) derivatives using paired clinical isolates of the Gram-negative (G(-)) bacteria , obtained from 11 patients with/without colistin resistance. Secondary structural studies were carried out to study interactions between the AMPs and lipid model membranes (LMMs) utilizing circular dichroism (CD).
View Article and Find Full Text PDFThe HIV-1 Nef protein plays a critical role in viral infectivity, high-titer replication in vivo, and immune escape of HIV-infected cells. Nef lacks intrinsic biochemical activity, functioning instead through interactions with diverse host cell signaling proteins and intracellular trafficking pathways. Previous studies have established an essential role for Nef homodimer formation at the plasma membrane for most if not all its functions.
View Article and Find Full Text PDFHigh-resolution x-ray data are reported for the ordered phases of long-chain di-monounsaturated C22:1 phosphocholine lipid bilayers. Similar to PC lipids that have saturated chains, diC22:1PC has a subgel phase and a gel phase, but dissimilarly, we find no ripple phase. Our quantitative focus is on the structure of the gel phase.
View Article and Find Full Text PDFSupramolecular interactions are well recognized and many of them have been extensively studied in chemistry. The formation of supramolecular complexes that rely on weak force interactions are less well studied in bilayer membranes. Herein, a supported bilayer membrane is used to probe the penetration of a complex between tetracycline and a macrocyclic polyether.
View Article and Find Full Text PDFProtein-polysaccharide composite materials have generated much interest due to their potential use in medical science and biotechnology. A comprehensive understanding of the assembly mechanism and the mesoscale architecture is needed for fabricating protein-polysaccharide composite materials with desired properties. In this study, complex assemblies were built on silica surfaces through a layer-by-layer (LbL) approach using bovine beta-lactoglobulin variant A (βLgA) and pectin as model protein and polysaccharide, respectively.
View Article and Find Full Text PDFKRas is a small GTPase and membrane-bound signaling protein. Newly synthesized KRas is post-translationally modified with a membrane-anchoring prenyl group. KRas chaperones are therapeutic targets in cancer due to their participation in trafficking oncogenic KRas to membranes.
View Article and Find Full Text PDFKRAS4B is a membrane-anchored signaling protein and a primary target in cancer research. Predictions from molecular dynamics simulations that have previously shaped our mechanistic understanding of KRAS signaling disagree with recent experimental results from neutron reflectometry, NMR, and thermodynamic binding studies. To gain insight into these discrepancies, we compare this body of biophysical data to back-calculated experimental results from a series of molecular simulations that implement different subsets of molecular interactions.
View Article and Find Full Text PDFIn the search for novel broad-spectrum therapeutics to fight chronic infections, inflammation, and cancer, host defense peptides (HDPs) have garnered increasing interest. Characterizing their biologically-active conformations and minimum motifs for function represents a requisite step to developing them into efficacious and safe therapeutics. Here, we demonstrate that metallating HDPs with Cu is an effective chemical strategy to improve their cytotoxicity on cancer cells.
View Article and Find Full Text PDFThe small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling.
View Article and Find Full Text PDFThe substantial part of the water-soluble hemicellulose fraction, obtained when processing cellulose to produce paper and other products, has so far been discarded. The aim of this work is to reveal the interfacial properties of softwood hemicellulose (galactoglucomannan, GGM) in relation to their molecular and solution structure. In this study the sugar composition of GGM was characterised by chemical analysis as well as 1D and 2D NMR spectroscopy.
View Article and Find Full Text PDFA framework is applied to quantify information gain from neutron or X-ray reflectometry experiments [Treece, Kienzle, Hoogerheide, Majkrzak, Lösche & Heinrich (2019). . , 47-59], in an in-depth investigation into the design of scattering contrast in biological and soft-matter surface architectures.
View Article and Find Full Text PDFWe report on the permeation of free and macrocycle-bound avobenzone across a POPC lipid bilayer through combined neutron reflectometry experiments and molecular dynamics simulations. Results indicate that the -phosphonated calix[8]arene macrocycle limits the avobenzone penetration into the upper leaflet of the membrane. Hence, it could serve as a useful vehicle for safer formulations.
View Article and Find Full Text PDFWe present a novel method to incorporate structural results from surface-sensitive scattering, such as X-ray or neutron reflectometry, into molecular dynamics simulations. While reflectometry techniques generally provide a means to determine the molecular-scale structures of organized interfacial films, they were recently shown to offer the capability to characterize the structures of protein-membrane complexes supported by a solid substrate. One-dimensional information inherent in the experimental results is used in the form of component volume occupancy (CVO) profiles, which describe the distribution of molecular components within an interfacial architecture, to construct real-space constraints in the form of a biasing potential for the simulation that vanishes when the simulated and experimental profiles agree.
View Article and Find Full Text PDFMaintaining the integrity of cell membranes is indispensable for cellular viability. Poloxamer 188 (P188), a poly(ethylene oxide)--poly(propylene oxide)--poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer with a number-average molecular weight of 8700 g/mol and containing 80% by mass PEO, protects cell membranes from various external injuries and has the potential to be used as a therapeutic agent in diverse applications. The membrane protection mechanism associated with P188 is intimately connected with how this block copolymer interacts with the lipid bilayer, the main component of a cell membrane.
View Article and Find Full Text PDFIn the quest for new antibiotics, two novel engineered cationic antimicrobial peptides (eCAPs) have been rationally designed. WLBU2 and D8 (all 8 valines are the d-enantiomer) efficiently kill both Gram-negative and -positive bacteria, but WLBU2 is toxic and D8 nontoxic to eukaryotic cells. We explore protein secondary structure, location of peptides in six lipid model membranes, changes in membrane structure and pore evidence.
View Article and Find Full Text PDFAimed at reproducing the results of electrophysiological studies of synaptic signal transduction, conventional models of neurotransmission are based on the specific binding of neurotransmitters to ligand-gated receptor ion channels. However, the complex kinetic behavior observed in synaptic transmission cannot be reproduced in a standard kinetic model without the ad hoc postulation of additional conformational channel states. On the other hand, if one invokes unspecific neurotransmitter adsorption to the bilayer-a process not considered in the established models-the electrophysiological data can be rationalized with only the standard set of three conformational receptor states that also depend on this indirect coupling of neurotransmitters via their membrane interaction.
View Article and Find Full Text PDFNeutron reflectometry (NR) is a powerful method for looking at the structures of multilayered thin films, including biomolecules on surfaces, particularly proteins at lipid interfaces. The spatial resolution of the film structure obtained through an NR experiment is limited by the maximum wavevector transfer at which the reflectivity can be measured. This maximum is in turn determined primarily by the scattering background, from incoherent scattering from a liquid reservoir or inelastic scattering from cell materials.
View Article and Find Full Text PDFSrc family kinases (SFKs) are a group of nonreceptor tyrosine kinases that are characterized by their involvement in critical signal transduction pathways. SFKs are often found attached to membranes, but little is known about the conformation of the protein in this environment. Here, solution nuclear magnetic resonance (NMR), neutron reflectometry (NR), and molecular dynamics (MD) simulations were employed to study the membrane interactions of the intrinsically disordered SH4 and Unique domains of the Src family kinase Hck.
View Article and Find Full Text PDF