The RXN for Chemistry project, initiated by IBM Research Europe - Zurich in 2017, aimed to develop a series of digital assets using machine learning techniques to promote the use of data-driven methodologies in synthetic organic chemistry. This research adopts an innovative concept by treating chemical reaction data as language records, treating the prediction of a synthetic organic chemistry reaction as a translation task between precursor and product languages. Over the years, the IBM Research team has successfully developed language models for various applications including forward reaction prediction, retrosynthesis, reaction classification, atom-mapping, procedure extraction from text, inference of experimental protocols and its use in programming commercial automation hardware to implement an autonomous chemical laboratory.
View Article and Find Full Text PDFPolyphthalaldehyde is a self-developing resist material for electron beam and thermal scanning probe lithography (t-SPL). Removing the resist in situ (during the lithography process itself) simplifies processing and enables direct pattern inspection, however, at the price of a low etch resistance of the resist. To convert the material into a etch resistant hard mask, we study the selective cyclic infiltration of trimethyl-aluminum (TMA)/water into polyphthalaldehyde.
View Article and Find Full Text PDFDuring the past decade, capillary assembly in topographical templates has evolved into an efficient method for the heterogeneous integration of micro- and nano-scale objects on a variety of surfaces. This assembly route has been applied to a large spectrum of materials of micrometer to nanometer dimensions, supplied in the form of aqueous colloidal suspensions. Using systems produced via bulk synthesis affords a huge flexibility in the choice of materials, holding promise for the realization of novel superior devices in the fields of optics, electronics and health, if they can be integrated into surface structures in a fast, simple, and reliable way.
View Article and Find Full Text PDFHybrid nanoparticle clusters (often metallic) are interesting plasmonic materials with tunable resonances and a near-field electromagnetic enhancement at interparticle junctions. Therefore, in recent years, we have witnessed a surge in both the interest in these materials and the efforts to obtain them. However, a versatile fabrication of hybrid nanoclusters, that is, combining more than one material, still remains an open challenge.
View Article and Find Full Text PDFSurface assembly is often decomposed into two classes: diffusion and reaction limited processes. The transition between the two cases is complex because the dynamics are so different. In this article, we simulate, explain, and experimentally discuss the evolution of the spatial distribution for surface assemblies with diffusion limited and reaction limited processes.
View Article and Find Full Text PDFDiffusion relates the flux of particles to the local gradient of the particle density in a deterministic way. The question arises as to what happens when the particle density is so low that the local gradient becomes an ill-defined concept. The dilemma was resolved early last century by analyzing the average motion of particles subject to random forces whose magnitude is such that the particles are always in thermal equilibrium with their environment.
View Article and Find Full Text PDFHigh-resolution lithography often involves thin resist layers which pose a challenge for pattern characterization. Direct evidence that the pattern was well-defined and can be used for device fabrication is provided if a successful pattern transfer is demonstrated. In the case of thermal scanning probe lithography (t-SPL), highest resolutions are achieved for shallow patterns.
View Article and Find Full Text PDFWe show enhanced second-harmonic generation (SHG) from a hybrid metal-dielectric nanodimer consisting of an inorganic perovskite nanoparticle of barium titanate (BaTiO) coupled to a metallic gold (Au) nanoparticle. BaTiO-Au nanodimers of 100 nm/80 nm sizes are fabricated by sequential capillarity-assisted particle assembly. The BaTiO nanoparticle has a noncentrosymmetric crystalline structure and generates bulk SHG.
View Article and Find Full Text PDFColloidal particles have long been under the spotlight of a very diverse research community, given their ubiquitous presence in a broad class of materials and processes, and their pivotal role as model systems. More recently, intense efforts have been devoted to the development of micro- and nanoparticles combining multiple materials in objects with a controlled architecture, hence introducing multiple functionalities and a prescribed symmetry for interactions. These particles are often called hybrid colloids or colloidal molecules, given the analogy with classical molecules presenting well defined structures and chemical compositions.
View Article and Find Full Text PDFActive colloids, also known as artificial microswimmers, are self-propelled micro- and nanoparticles that convert uniform sources of fuel (e.g. chemical) or uniform external driving fields (e.
View Article and Find Full Text PDFThe effects of increasing the driving forces for a 1-D assembly of nanoparticles onto a surface are investigated with experimental results and models. Modifications, which take into account not only the particle-particle interactions but also particle-surface interactions, to previously established extended random sequential adsorption simulations are tested and verified. Both data and model are compared against the heterogeneous random sequential adsorption simulations, and finally, a connection between the two models is suggested.
View Article and Find Full Text PDFThe assembly of artificial nanostructured and microstructured materials which display structures and functionalities that mimic nature's complexity requires building blocks with specific and directional interactions, analogous to those displayed at the molecular level. Despite remarkable progress in synthesizing "patchy" particles encoding anisotropic interactions, most current methods are restricted to integrating up to two compositional patches on a single "molecule" and to objects with simple shapes. Currently, decoupling functionality and shape to achieve full compositional and geometrical programmability remains an elusive task.
View Article and Find Full Text PDFDetection and precise localization of nanoscale structures buried beneath spin-coated films are highly valuable additions to nanofabrication technology. In principle, the topography of the final film contains information about the location of the buried features. However, it is generally believed that the relation is masked by flow effects, which lead to an upstream shift of the dry film's topography and render precise localization impossible.
View Article and Find Full Text PDFCapillary assembly in a topographical template is a powerful and flexible method for fabricating complex and programmable particle assemblies. To date, very little attention has been paid to the effects that the trap geometry--in particular the trap depth--has on the outcome of the assembly process. In this paper, we provide insights into the mechanisms behind this directed assembly method by systematically studying the impact of the trap depth and the surface tension of the suspension.
View Article and Find Full Text PDFA method for the cascaded capillary assembly of different particle populations in a single assembly cycle is presented. The method addresses the increasing need for fast and simple fabrication of multicomponent arrays from colloidal micro- and nanoscale building blocks for constructing nanoelectronic, optical, and sensing devices. It is based on the use of a microfluidic device from which two independent capillary bridges extend.
View Article and Find Full Text PDFWe demonstrate a method to assemble gold nanorods highly deterministically into a chain formation by means of directed capillary assembly. This way we achieved straight chains consisting of end-to-end aligned gold nanorods assembled in one specific direction with well-controlled gaps of ∼6 nm between the individual constituents. We determined the conditions for optimum quality and yield of nanorod chain assembly by investigating the influence of template dimensions and assembly temperature.
View Article and Find Full Text PDFWe have used a temperature sensitive polymer film as a removable template to position, and align, gold nanorods onto an underlying target substrate. Shape-matching guiding structures for the assembly of nanorods of size 80 nm × 25 nm have been written by thermal scanning probe lithography. The nanorods were assembled into the guiding structures, which determine both the position and the orientation of single nanorods, by means of capillary interactions.
View Article and Find Full Text PDFBiomed Microdevices
December 2011
Commercially available polydimethylsiloxane (PDMS) elastomers, such as Sylgard 184® are widely used in soft lithography and for microfluidic applications. These PDMS elastomers contain fillers to enhance their mechanical stability. The reinforcing fillers, often sub-micrometer small SiO(2) particles, tend to aggregate, swell with water, and thereby become cognoscible in a way that can strongly interfere with the visualization of micro-scale events taking place next to PDMS structures.
View Article and Find Full Text PDFCapillary assembly was explored for the precise placement of 25 nm × 70 nm colloidal gold nanorods on prestructured poly(dimethylsiloxane) template surfaces. The concentration of nanorods and cationic surfactant cetyltrimethylammonium bromide (CTAB), the template wettability, and most critically the convective transport of the dispersed nanorods were tuned to study their effect on the resulting assembly yield. It is shown that gold nanorods can be placed into arrayed 120-nm diameter holes, achieving assembly yields as high as 95% when the local concentration of nanorods at the receding contact line is sufficiently high.
View Article and Find Full Text PDFA reliable strategy is presented to combine the preparation of functional building blocks based on polymer beads decorated with luminescent nanocrystals (NCs) and their precise positioning onto suitable patterns by capillary assembly technique. In particular, a layer-by-layer (LbL) polyelectrolyte (PE) deposition procedure has been implemented to provide uniform NC coverage on PS beads, thus conveying the optical properties of luminescent nanocrystals to highly processable PS beads. The latter have then been integrated into patterned stamps by means of template-driven capillary assembly.
View Article and Find Full Text PDF