We present a new method capable of learning multiple categories in an interactive and life-long learning fashion to approach the "stability-plasticity dilemma". The problem of incremental learning of multiple categories is still largely unsolved. This is especially true for the domain of cognitive robotics, requiring real-time and interactive learning.
View Article and Find Full Text PDFObject representation in the inferior temporal cortex (IT), an area of visual cortex critical for object recognition in the primate, exhibits two prominent properties: (1) objects are represented by the combined activity of columnar clusters of neurons, with each cluster representing component features or parts of objects, and (2) closely related features are continuously represented along the tangential direction of individual columnar clusters. Here we propose a learning model that reflects these properties of parts-based representation and topographic organization in a unified framework. This model is based on a nonnegative matrix factorization (NMF) basis decomposition method.
View Article and Find Full Text PDFWe present a biologically motivated architecture for object recognition that is based on a hierarchical feature-detection model in combination with a memory architecture that implements short-term and long-term memory for objects. A particular focus is the functional realization of online and incremental learning for the task of appearance-based object recognition of many complex-shaped objects. We propose some modifications of learning vector quantization algorithms that are especially adapted to the task of incremental learning and capable of dealing with the stability-plasticity dilemma of such learning algorithms.
View Article and Find Full Text PDFWe present a biologically motivated architecture for object recognition that is capable of online learning of several objects based on interaction with a human teacher. The system combines biological principles such as appearance-based representation in topographical feature detection hierarchies and context-driven transfer between different levels of object memory. Training can be performed in an unconstrained environment by presenting objects in front of a stereo camera system and labeling them by speech input.
View Article and Find Full Text PDFSparse coding is an important approach for the unsupervised learning of sensory features. In this contribution, we present two new methods that extend the traditional sparse coding approach with supervised components. Our goal is to increase the suitability of the learned features for classification tasks while keeping most of their general representation capability.
View Article and Find Full Text PDFWe present a hybrid learning method bridging the fields of recurrent neural networks, unsupervised Hebbian learning, vector quantization, and supervised learning to implement a sophisticated image and feature segmentation architecture. This architecture is based on the competitive layer model (CLM), a dynamic feature binding model, which is applicable on a wide range of perceptual grouping and segmentation problems. A predefined target segmentation can be achieved as attractor states of this linear threshold recurrent network, if the lateral weights are chosen by Hebbian learning.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
June 2005
A major problem in designing artificial neural networks is the proper choice of the network architecture. Especially for vision networks classifying three-dimensional (3-D) objects this problem is very challenging, as these networks are necessarily large and therefore the search space for defining the needed networks is of a very high dimensionality. This strongly increases the chances of obtaining only suboptimal structures from standard optimization algorithms.
View Article and Find Full Text PDFThere is an ongoing debate over the capabilities of hierarchical neural feedforward architectures for performing real-world invariant object recognition. Although a variety of hierarchical models exists, appropriate supervised and unsupervised learning methods are still an issue of intense research. We propose a feedforward model for recognition that shares components like weight sharing, pooling stages, and competitive nonlinearities with earlier approaches but focuses on new methods for learning optimal feature-detecting cells in intermediate stages of the hierarchical network.
View Article and Find Full Text PDF