Publications by authors named "Heiko Schmid"

Retinal ischemia is a common pathomechanism in many ocular disorders such as age-related macular degeneration (AMD), diabetic retinopathy, glaucoma or retinal vascular occlusion. Several studies demonstrated that ischemia/reperfusion (I/R) leads to morphological and functional changes of different retinal cell types. However, little is known about the ischemic effects on the optic nerve.

View Article and Find Full Text PDF

Purpose: Ischemia is a risk factor for eye diseases like ocular vein occlusion or glaucoma. To investigate effects of ischemia-reperfusion (I/R) a lot of different animal models are used, studying one or two different cell types, which creates heterogeneity of data. The aim of this study was to investigate the function and morphology of the whole retina and different retinal cell types in an I/R model.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is often accompanied by optic nerve inflammation. And some patients experience permanent vision loss. We examined if the grade of optic nerve infiltration and demyelination affects the severity of clinical signs in an experimental autoimmune encephalomyelitis (EAE) model.

View Article and Find Full Text PDF

Background: Antibodies against retinal and optic nerve antigens are detectable in glaucoma patients. Recent studies using a model of experimental autoimmune glaucoma demonstrated that immunization with certain ocular antigens causes an immun-mediated retinal ganglion cell loss in rats.

Methodology/principal Findings: Rats immunized with a retinal ganglion cell layer homogenate (RGA) had a reduced retinal ganglion cell density on retinal flatmounts (p = 0.

View Article and Find Full Text PDF

Electrical stimulation has been shown to have neuroprotective effects on ganglion cells and photoreceptors in axotomized and dystrophic retinas from Royal College of Surgeons (RCS) rats. This study determined whether electrical stimulation also has a neuroprotective effect on cells in the inner nuclear layer (INL) of retinas. We cultivated retinas from adult RCS rats on microelectrode arrays and stimulated them continuously with 20 Hz for up to 5 days.

View Article and Find Full Text PDF