Publications by authors named "Heiko Oltmanns"

In both applied and basic research, Agrobacterium-mediated transformation is commonly used to introduce genes into plants. We investigated the effect of three Agrobacterium tumefaciens strains and five transferred (T)-DNA origins of replication on transformation frequency, transgene copy number, and the frequency of integration of non-T-DNA portions of the T-DNA-containing vector (backbone) into the genome of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). Launching T-DNA from the picA locus of the Agrobacterium chromosome increases the frequency of single transgene integration events and almost eliminates the presence of vector backbone sequences in transgenic plants.

View Article and Find Full Text PDF

Successful transformation of plants by Agrobacterium tumefaciens requires that the bacterial T-complex actively escorts T-DNA into the host's nucleus. VirD2 and VirE2 are virulence proteins on the T-complex that have plant-functional nuclear localization signal sequences that may recruit importin alpha proteins of the plant for nuclear import. In this study, we evaluated the involvement of seven of the nine members of the Arabidopsis thaliana importin alpha family in Agrobacterium transformation.

View Article and Find Full Text PDF

The storage root (taproot) of sugar beet (Beta vulgaris L.) originates from hypocotyl and primary root and contains many different tissues such as central xylem, primary and secondary cambium, secondary xylem and phloem, and parenchyma. It was the aim of this work to characterize the promoters of three taproot-expressed genes with respect to their tissue specificity.

View Article and Find Full Text PDF

The taproot from sugar beet (Beta vulgaris L.) undergoes a specific developmental process to function as a food storage organ. Suppression Subtractive Hybridization (SSH) was utilized for the isolation of cDNA fragments for taproot expressed genes.

View Article and Find Full Text PDF